Advertisement

Differences in the Molecular Biology of Adenocarcinoma of the Esophagus, Gastric Cardia, and Upper Gastric Third

  • Kuno Lehmann
  • Paul M. SchneiderEmail author
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 182)

Abstract

Adenocarcinoma of the distal esophagus, gastric cardia, and upper gastric third are grouped in type I-III by the Siewert classification. This classification is based on the endoscopic localisation of the tumor center, and is the most important diagnostic tool to group these tumors. On a molecular level, there is currently no marker that would allow to differentiate the three different types. Furthermore, the Siewert classification was not uniformly used in the recent literature, making interpretation and generalization of these results difficult. However, several potential targets have been identified that may help to separate these tumors by molecular markers, and are summarized in this chapter.

Keywords

Vascular Endothelial Growth Factor Esophageal Carcinoma Intestinal Metaplasia Gastric Cardia Cardia Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Latif MM, O’Riordan J, Windle HJ, Carton E, Ravi N, Kelleher D, Reynolds JV (2004) NF-kappaB activation in esophageal adeno­carcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemo­­radiotherapy. Ann Surg 239:491–500PubMedCrossRefGoogle Scholar
  2. Anderson LA, Murphy SJ, Johnston BT, Watson RGP, Ferguson HR, Bamford KB, Ghazy A, McCarron P, McGuigan J, Reynolds JV et al (2008) Relationship between Helicobacter pylori infection and gastric atrophy and the stages of the oesophageal inflammation, metaplasia, adenocarcinoma sequence: results from the FINBAR case-control study. Gut 57:734–739Google Scholar
  3. Arul GS, Moorghen M, Myerscough N, Alderson DA, Spicer RD, Corfield AP (2000) Mucin gene expression in Barrett’s oesophagus: an in situ hybridisation and immunohistochemical study. Gut 47:753–761PubMedCrossRefGoogle Scholar
  4. Auvinen MI, Sihvo EI, Ruohtula T, Salminen JT, Koivistoinen A, Siivola P, Ronnholm R, Ramo JO, Bergman M, Salo JA (2002) Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma. J Clin Oncol 20:2971–2979PubMedCrossRefGoogle Scholar
  5. Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J (1998) Altered cadherin and catenin complexes in the Barrett’s eso­phagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and ded­iffer­­­entiation. Am J Pathol 152:135–144PubMedGoogle Scholar
  6. Barclay JY, Morris A, Nwokolo CU (2005) Telomerase, hTERT and splice variants in Barrett’s oesophagus and oesophageal adenocarcinoma. Eur J Gastroenterol Hepatol 17:221–227PubMedCrossRefGoogle Scholar
  7. Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J (2002) p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology 122:1113–1121PubMedCrossRefGoogle Scholar
  8. Botterweck AA, Schouten LJ, Volovics A, Dorant E, van Den Brandt PA (2000) Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries. Int J Epidemiol 29:645–654PubMedCrossRefGoogle Scholar
  9. Buskens CJ, Sivula A, van Rees BP, Haglund C, Offerhaus GJ, van Lanschot JJ, Ristimaki A (2003) Comparison of cyclooxygenase 2 expression in adenocarcinomas of the gastric cardia and distal oesophagus. Gut 52:1678–1683PubMedCrossRefGoogle Scholar
  10. Buskens CJ, Van Rees BP, Sivula A, Reitsma JB, Haglund C, Bosma PJ, Offerhaus GJ, Van Lanschot JJ, Ristimaki A (2002) Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology 122:1800–1807PubMedCrossRefGoogle Scholar
  11. Cabuk D, Basaran G, Celikel C, Dane F, Yumuk PF, Iyikesici MS, Ekenel M, Turhal NS (2007) Vascular endothelial growth factor, hypoxia-inducible factor 1 alpha and CD34 expressions in early-stage gastric tumors: relationship with pathological factors and prognostic impact on survival. Oncology 72:111–117PubMedCrossRefGoogle Scholar
  12. Chang Y, Gong J, Liu B, Zhang J, Dai F (2004) Gene expression profiling in Barrett’s esophagus and cardia intestinal metaplasia: a comparative analysis using cDNA microarray. World J Gastroenterol 10:3194–3196PubMedGoogle Scholar
  13. Couvelard A, Cauvin JM, Goldfain D, Rotenberg A, Robaszkiewicz M, Flejou JF (2001) Cytokeratin immunoreactivity of intestinal metaplasia at normal oesophagogastric junction indicates its aetiology. Gut 49:761–766PubMedCrossRefGoogle Scholar
  14. Couvelard A, Paraf F, Gratio V, Scoazec JY, Henin D, Degott C, Flejou JF (2000) Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 192:14–18PubMedCrossRefGoogle Scholar
  15. Csendes A, Smok G, Quiroz J, Burdiles P, Rojas J, Castro C, Henriquez A (2002) Clinical, endoscopic, and functional studies in 408 patients with Barrett’s esophagus, compared to 174 cases of intestinal metaplasia of the cardia. Am J Gastroenterol 97:554–560PubMedCrossRefGoogle Scholar
  16. Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053PubMedCrossRefGoogle Scholar
  17. Dixon MF, Mapstone NP, Neville PM, Moayyedi P, Axon ATR (2002) Bile reflux gastritis and intestinal metaplasia at the cardia. Gut 51:351–355PubMedCrossRefGoogle Scholar
  18. Driessen A, Nafteux P, Lerut T, Van Raemdonck D, De Leyn P, Filez L, Penninckx F, Geboes K, Ectors N (2004) Identical cytokeratin expression pattern CK7+/CK20- in esophageal and cardiac cancer: etiopathological and clinical implications. Mod Pathol 17:49–55PubMedCrossRefGoogle Scholar
  19. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danenberg KD, Danenberg PV et al (2000) Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 60:5021–5026Google Scholar
  20. El-Rifai W, Frierson HF Jr, Moskaluk CA, Harper JC, Petroni GR, Bissonette EA, Jones DR, Knuutila S, Powell SM (2001) Genetic differences between adenocarcinomas arising in Barrett’s esophagus and gastric mucosa. Gas­troenterology 121:592–598PubMedCrossRefGoogle Scholar
  21. Fitzgerald RC (2006) Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 55:1810–1820PubMedCrossRefGoogle Scholar
  22. Flejou JF, Gratio V, Muzeau F, Hamelin R (1999) p53 abnormalities in adenocarcinoma of the gastric cardia and antrum. Mol Pathol 52:263–268PubMedCrossRefGoogle Scholar
  23. Flucke U, Steinborn E, Dries V, Monig SP, Schneider PM, Thiele J, Holscher AH, Dienes HP, Baldus SE (2003) Immunoreactivity of cytokeratins (CK7, CK20) and mucin peptide core antigens (MUC1, MUC2, MUC5AC) in adenocarcinomas, normal and metaplastic tissues of the distal oesophagus, oesophago-gastric junction and proximal stomach. Histopathology 43:127–134PubMedCrossRefGoogle Scholar
  24. Glickman JN, Shahsafaei A, Odze RD (2003) Mucin core peptide expression can help differentiate Barrett’s esophagus from intestinal metaplasia of the stomach. Am J Surg Pathol 27:1357–1365PubMedCrossRefGoogle Scholar
  25. Gulmann C, Lantuejoul S, Grace A, Leader M, Patchett S, Kay E (2005) Telomerase activity in proximal and distal gastric neoplastic and preneoplastic lesions using immunohistochemical detection of hTERT. Dig Liver Dis 37:439–445PubMedCrossRefGoogle Scholar
  26. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  27. Ireland AP, Shibata DK, Chandrasoma P, Lord RV, Peters JH, DeMeester TR (2000) Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg 231:179–187PubMedCrossRefGoogle Scholar
  28. Iwata C, Kano MR, Komuro A, Oka M, Kiyono K, Johansson E, Morishita Y, Yashiro M, Hirakawa K, Kaminishi M et al (2007) Inhibition of cyclooxygenase-2 suppresses lymph node metastasis via reduction of lymphangiogenesis. Cancer Res 67:10181–10189Google Scholar
  29. Kacar F, Meteoglu I, Yasa H, Levi E (2007) Helicobacter pylori-induced changes in the gastric mucosa are associated with mitogen-­activated protein kinase (MAPK) activation. Appl Immuno­histochem Mol Morphol 15:224–228PubMedCrossRefGoogle Scholar
  30. Kamangar F, Dawsey SM, Blaser MJ, Perez-Perez GI, Pietinen P, Newschaffer CJ, Abnet CC, Albanes D, Virtamo J, Taylor PR (2006) Opposing risks of gastric cardia and noncardia gastric adenocarcinomas associated with Heli­cobacter pylori seropositivity. J Natl Cancer Inst 98:1445–1452PubMedCrossRefGoogle Scholar
  31. Kaur BS, Ouatu-Lascar R, Omary MB, Triada­filopoulos G (2000) Bile salts induce or blunt cell proliferation in Barrett’s esophagus in an acid-dependent fashion. Am J Physiol Gast­rointest Liver Physiol 278:G1000–G1009PubMedGoogle Scholar
  32. Kim MA, Lee HS, Yang HK, Kim WH (2005) Clinicopathologic and protein expression dif­ferences between cardia carcinoma and noncardia carcinoma of the stomach. Cancer 103:1439–1446PubMedCrossRefGoogle Scholar
  33. Klump B, Hsieh CJ, Holzmann K, Gregor M, Porschen R (1998) Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 115:1381–1386PubMedCrossRefGoogle Scholar
  34. Kolev Y, Uetake H, Iida S, Ishikawa T, Kawano T, Sugihara K (2007) Prognostic significance of VEGF expression in correlation with COX-2, microvessel density, and clinicopathological characteristics in human gastric carcinoma. Ann Surg Oncol 14:2738–2747PubMedCrossRefGoogle Scholar
  35. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331PubMedCrossRefGoogle Scholar
  36. Liu GS, Gong J, Cheng P, Zhang J, Chang Y, Qiang L (2005) Distinction between short-­segment Barrett’s esophageal and cardiac intestinal metaplasia. World J Gastroenterol 11:6360–6365PubMedGoogle Scholar
  37. Marsman WA, Birjmohun RS, van Rees BP, Caspers E, Johan G, Offerhaus A, Bosma PJ, Jan J, van Lanschot B (2004) Loss of heterozygosity and immunohistochemistry of adenocarcinomas of the esophagus and gastric cardia. Clin Cancer Res 10:8479–8485PubMedCrossRefGoogle Scholar
  38. Mattioli S, Ruffato A, Di Simone MP, Corti B, D’Errico A, Lugaresi ML, Mattioli B, D’Ovidio F (2007) Immunopathological patterns of the stomach in adenocarcinoma of the esophagus, cardia, and gastric antrum: gastric profiles in Siewert type I and II tumors. Ann Thorac Surg 83:1814–1819PubMedCrossRefGoogle Scholar
  39. Menke-Pluymers MB, van Drunen E, Vissers KJ, Mulder AH, Tilanus HW, Hagemeijer A (1996) Cytogenetic analysis of Barrett’s mucosa and adenocarcinoma of the distal esophagus and ­cardia. Cancer Genet Cytogenet 90:109–117PubMedCrossRefGoogle Scholar
  40. Morales CP, Lee EL, Shay JW (1998) In situ hybridization for the detection of telomerase RNA in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer 83:652–659PubMedCrossRefGoogle Scholar
  41. Morales CP, Souza RF, Spechler SJ (2002) Hallmarks of cancer progression in Barrett’s oesophagus. Lancet 360:1587–1589PubMedCrossRefGoogle Scholar
  42. Mueller JD, Stein HJ, Oyang T, Natsugoe S, Feith M, Werner M, Rudiger Siewert J (2000) Frequency and clinical impact of lymph node micrometastasis and tumor cell microinvolvement in patients with adenocarcinoma of the esophagogastric junction. Cancer 89:1874–1882PubMedCrossRefGoogle Scholar
  43. Novak A, Dedhar S (1999) Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56:523–537PubMedCrossRefGoogle Scholar
  44. Nurgalieva Z, Lowrey A, El-Serag HB (2007) The use of cytokeratin stain to distinguish Barrett’s esophagus from contiguous tissues: a systematic review. Dig Dis Sci 52:1345–1354PubMedCrossRefGoogle Scholar
  45. Ormsby AH, Goldblum JR, Rice TW, Richter JE, Falk GW, Vaezi MF, Gramlich TL (1999) Cytokeratin subsets can reliably distinguish Barrett’s esophagus from intestinal metaplasia of the stomach. Hum Pathol 30:288–294PubMedCrossRefGoogle Scholar
  46. Schneider PM, Casson AG, Levin B, Garewal HS, Hoelscher AH, Becker K, Dittler HJ, Cleary KR, Troster M, Siewert JR et al (1996) Mutations of p53 in Barrett’s esophagus and Barrett’s cancer: a prospective study of ninety-eight cases. J Thorac Cardiovasc Surg 111:323–331; discussion 331–323Google Scholar
  47. Schneider PM, Stoeltzing O, Roth JA, Hoelscher AH, Wegerer S, Mizumoto S, Becker K, Dittler HJ, Fink U, Siewert JR (2000) P53 mutational status improves estimation of prognosis in patients with curatively resected adenocarcinoma in Barrett’s esophagus. Clin Cancer Res 6:3153–3158PubMedGoogle Scholar
  48. Schurr PG, Yekebas EF, Kaifi JT, Lasch S, Strate T, Kutup A, Cataldegirmen G, Bubenheim M, Pantel K, Izbicki JR (2006) Lymphatic spread and microinvolvement in adenocarcinoma of the esophago-gastric junction. J Surg Oncol 94:307–315PubMedCrossRefGoogle Scholar
  49. Shen B, Ormsby AH, Shen C, Dumot JA, Shao YW, Bevins CL, Gramlich TL (2002) Cytokeratin expression patterns in noncardia, intestinal metaplasia-associated gastric adenocarcinoma: implication for the evaluation of intestinal metaplasia and tumors at the esophagogastric junction. Cancer 94:820–831PubMedCrossRefGoogle Scholar
  50. Shureiqi I, Xu X, Chen D, Lotan R, Morris JS, Fischer SM, Lippman SM (2001) Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Res 61:4879–4884PubMedGoogle Scholar
  51. Siewert JR, Feith M, Stein HJ (2005) Biologic and clinical variations of adenocarcinoma at the esophago-gastric junction: relevance of a topographic-anatomic subclassification. J Surg Oncol 90:139–146; discussion 146Google Scholar
  52. Siewert JR, Stein HJ (1998) Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg 85:1457–1459PubMedCrossRefGoogle Scholar
  53. Stein HJ, Feith M, Siewert JR (2000) Cancer of the esophagogastric junction. Surg Oncol 9:35–41PubMedCrossRefGoogle Scholar
  54. Tajima Y, Yamazaki K, Makino R, Nishino N, Masuda Y, Aoki S, Kato M, Morohara K, Kusano M (2007) Differences in the histological findings, phenotypic marker expressions and genetic alterations between adenocarcinoma of the gastric cardia and distal stomach. Br J Cancer 96:631–638PubMedCrossRefGoogle Scholar
  55. Taniere P, Borghi-Scoazec G, Saurin JC, Lombard-Bohas C, Boulez J, Berger F, Hainaut P, Scoazec JY (2002) Cytokeratin expression in adenocarcinomas of the esophagogastric junction: a comparative study of adenocarcinomas of the distal esophagus and of the proximal stomach. Am J Surg Pathol 26:1213–1221PubMedCrossRefGoogle Scholar
  56. Tselepis C, Morris CD, Wakelin D, Hardy R, Perry I, Luong QT, Harper E, Harrison R, Attwood SE, Jankowski JA (2003) Upregulation of the oncogene c-myc in Barrett’s adenocarcinoma: induction of c-myc by acidified bile acid in vitro. Gut 52:174–180PubMedCrossRefGoogle Scholar
  57. van Dekken H, Geelen E, Dinjens WN, Wijnhoven BP, Tilanus HW, Tanke HJ, Rosenberg C (1999) Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett’s) and gastric cardia adenocarcinomas. Cancer Res 59:748–752PubMedGoogle Scholar
  58. van Lier MG, Bomhof FJ, Leendertse I, Flens M, Balk AT, Loffeld RJ (2005) Cytokeratin phenotyping does not help in distinguishing oesophageal adenocarcinoma from cancer of the gastric cardia. J Clin Pathol 58:722–724PubMedCrossRefGoogle Scholar
  59. von Rahden BH, Stein HJ, Siewert JR (2006) Surgical management of esophagogastric junction tumors. World J Gastroenterol 12:6608–6613Google Scholar
  60. Weiss MM, Kuipers EJ, Hermsen MA, van Grieken NC, Offerhaus J, Baak JP, Meuwissen SG, Meijer GA (2003) Barrett’s adenocarcinomas resemble adenocarcinomas of the gastric cardia in terms of chromosomal copy number changes, but relate to squamous cell carcinomas of the distal oesophagus with respect to the presence of high-level amplifications. J Pathol 199:157–165PubMedCrossRefGoogle Scholar
  61. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 58:2929–2934PubMedGoogle Scholar
  62. Wu J, Xia HHX, Tu SP, Fan DM, Lin MCM, Kung HF, Lam SK, Wong BCY (2003) 15-Lipoxygenase-1 mediates cyclooxygenase-2 inhibitor-induced apoptosis in gastric cancer. Carcinogenesis 24:243–247PubMedCrossRefGoogle Scholar
  63. Yanagi M, Keller G, Mueller J, Walch A, Werner M, Stein HJ, Siewert JR, Hofler H (2000) Comparison of loss of heterozygosity and microsatellite instability in adenocarcinomas of the distal esophagus and proximal stomach. Vir­chows Arch 437:605–610PubMedCrossRefGoogle Scholar
  64. Ye W, Held M, Lagergren J, Engstrand L, Blot WJ, McLaughlin JK, Nyren O (2004) Helicobacter pylori infection and gastric atrophy: risk of adenocarcinoma and squamous-cell carcinoma of the esophagus and adenocarcinoma of the gastric cardia. J Natl Cancer Inst 96:388–396PubMedCrossRefGoogle Scholar
  65. Yen C-J, Izzo JG, Lee D-F, Guha S, Wei Y, Wu T-T, Chen C-T, Kuo H-P, Hsu J-M, Sun H-L et al (2008). bile acid exposure up-regulates tuberous sclerosis complex 1/mammalian target of rapamycin pathway in Barrett’s-associated esophageal adenocarcinoma. Cancer Res 68:2632–2640Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of SurgeryUniversity Hospital of ZurichZurichSwitzerland

Personalised recommendations