Advertisement

The Pathogenesis of Barrett’s Metaplasia and the Progression to Esophageal Adenocarcinoma

  • Brechtje A. GrotenhuisEmail author
  • J. Jan B. van Lanschot
  • Winand N. M. Dinjens
  • Bas P. L. Wijnhoven
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 182)

Abstract

The most important risk factor for the development of Barrett’s esophagus is the reflux of both gastric and duodenal contents into the esophagus. The reason why Barrett’s metaplasia develops only in a minority of patients suffering from gastroesophageal reflux disease remains unknown.The exact mechanism behind the transition of normal squamous epithelium into specialized columnar epithelium is also unclear. It is likely that stem cells are involved in this metaplastic change, as they are the only permanent residents of the epithelium. Several tumorigenic steps that lead to the underlying genetic instability, which is indispensable in the progression from columnar metaplasia to esophageal adenocarcinoma have been des­c­rib­ed. This review outlines the process of pathogenesis of Barrett’s metaplasia and its pro­gression to esophageal adenocarcinoma.

Keywords

Lower Esophageal Sphincter Intestinal Metaplasia Esophageal Adenocarcinoma Columnar Epithelium Adenomatous Polyposis Coli Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Latif MM, O’Riordan JM, Ravi N, Kelleher D, Reynolds JV (2005) Activated nuclear factor-kappa B and cytokine profiles in the esophagus parallel tumor regression following neoadjuvant chemoradiotherapy. Dis Esophagus 18:246–252PubMedGoogle Scholar
  2. al-Kasspooles M, Moore JH, Orringer MB, Beer DG (1993) Amplification and over-expression of the EGFR and erbB-2 genes in human esophageal adenocarcinomas. Int J Cancer 54:213–219Google Scholar
  3. Allison PR, Johnstone AS (1953) The oesophagus lined with gastric mucous membrane. Thorax 8:87–101PubMedGoogle Scholar
  4. Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E, Ahsan H, Finegold J, Stevens PD, Green PH, Hibshoosh H, Neugut AI, Holt PR, Weinstein IB (1996) Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 5:457–459PubMedGoogle Scholar
  5. Aste H, Bonelli L, Ferraris R, Conio M, Lapertosa G (1999) Gastroesophageal reflux disease: relationship between clinical and histological features. GOSPE. Gruppo Operativo per lo Studio delle Precancerosi dell’Esofago. Dig Dis Sci 44:2412–2418PubMedGoogle Scholar
  6. Atherfold PA, Jankowski JA (2006) Molecular bio­logy of Barrett’s cancer. Best Pract Res Clin Gastroenterol 20:813–827PubMedGoogle Scholar
  7. Auvinen MI, Sihvo EI, Ruohtula T, Salminen JT, Koivistoinen A, Siivola P, Ronnholm R, Ramo JO, Bergman M, Salo JA (2002) Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma. J Clin Oncol 20:2971–2979PubMedGoogle Scholar
  8. Bahmanyar S, Zendehdel K, Nyren O, Ye W (2007) Risk of oesophageal cancer by histology among patients hospitalised for gastroduodenal ulcers. Gut 56:464–468PubMedGoogle Scholar
  9. Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J (1998) Altered cadherin and catenin complexes in the Barrett’s eso­phagus-dysplasia-adenocarcinoma sequence: cor­relation with disease progression and de­diff­erentiation. Am J Pathol 152:135–144PubMedGoogle Scholar
  10. Bani-Hani K, Martin IG, Hardie LJ, Mapstone N, Briggs JA, Forman D, Wild CP (2000) Pros­pective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 92:1316–1321PubMedGoogle Scholar
  11. Barnes PJ, Karin M (1997) Nuclear factor-kappa B: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071PubMedGoogle Scholar
  12. Barrett NR (1950) Chronic peptic ulcer of the oesophagus and ‘oesophagitis’. Br J Surg 38:175–182PubMedGoogle Scholar
  13. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904PubMedGoogle Scholar
  14. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr (1991) Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 265:1287–1289PubMedGoogle Scholar
  15. Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS (1997) Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology 112:760–765PubMedGoogle Scholar
  16. Boynton RF, Blount PL, Yin J, Brown VL, Huang Y, Tong Y, McDaniel T, Newkirk C, Resau JH, Raskind WH et al (1992) Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc Natl Acad Sci USA 89:3385–3388PubMedGoogle Scholar
  17. Bremner CG, Lynch VP, Ellis FH Jr (1970) Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 68:209–216PubMedGoogle Scholar
  18. Buskens CJ, Van Rees BP, Sivula A, Reitsma JB, Haglund C, Bosma PJ, Offerhaus GJ, Van Lanschot JJ, Ristimaki A (2002) Prognostic significance of elevated cyclooxygenase 2 expression in patients with adenocarcinoma of the esophagus. Gastroenterology 122:1800–1807PubMedGoogle Scholar
  19. Buskens CJ, Ristimaki A, Offerhaus GJ, Richel DJ, van Lanschot JJ (2003) Role of cyclo­oxygenase-2 in the development and treatment of oesophageal adenocarcinoma. Scand J Gastroenterol Suppl: 87–93Google Scholar
  20. Buttar NS, Falk GW (2001) Pathogenesis of gastroesophageal reflux and Barrett esophagus. Mayo Clin Proc 76:226–234PubMedGoogle Scholar
  21. Buttar NS, Wang KK (2004) Mechanisms of disease: carcinogenesis in Barrett’s esophagus. Nat Clin Pract Gastroenterol Hepatol 1:106–112PubMedGoogle Scholar
  22. Buttar NS, Wang KK, Anderson MA, Dierkhising RA, Pacifico RJ, Krishnadath KK, Lutzke LS (2002) The effect of selective cyclooxygenase-2 inhibition in Barrett’s esophagus epithelium: an in vitro study. J Natl Cancer Inst 94:422–429PubMedGoogle Scholar
  23. Caldwell MT, Lawlor P, Byrne PJ, Walsh TN, Hennessy TP (1995) Ambulatory oesophageal bile reflux monitoring in Barrett’s oesophagus. Br J Surg 82:657–660PubMedGoogle Scholar
  24. Cameron AJ, Lomboy CT (1992) Barrett’s esophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology 103:1241–1245PubMedGoogle Scholar
  25. Cameron AJ, Ott BJ, Payne WS (1985) The incidence of adenocarcinoma in columnar-lined (Barrett’s) esophagus. N Engl J Med 313:857–859PubMedGoogle Scholar
  26. Carney CN, Orlando RC, Powell DW, Dotson MM (1981) Morphologic alterations in early acid-induced epithelial injury of the rabbit esophagus. Lab Invest 45:198–208PubMedGoogle Scholar
  27. Casson AG, Evans SC, Gillis A, Porter GA, Veugelers P, Darnton SJ, Guernsey DL, Hainaut P (2003) Clinical implications of p53 tumor suppressor gene mutation and protein expression in esophageal adenocarcinomas: results of a ten-year prospective study. J Thorac Cardiovasc Surg 125:1121–1131PubMedGoogle Scholar
  28. Champion G, Richter JE, Vaezi MF, Singh S, Alexander R (1994) Duodenogastroesophageal reflux: relationship to pH and importance in Barrett’s esophagus. Gastroenterology 107:747–754PubMedGoogle Scholar
  29. Chandrasoma PT, DeMeester TR (2006) Does columnar-lined esophagus increase in length? Does Barrett esophagus increase in length? In: GERD: Reflux to esophageal adenocarcinoma. Elsevier, Oxford, pp 190–192Google Scholar
  30. Chandrasoma PT, Der R, Ma Y, Peters J, Demeester T (2003) Histologic classification of patients based on mapping biopsies of the gastroesophageal junction. Am J Surg Pathol 27:929–936PubMedGoogle Scholar
  31. Chang CL, Lao-Sirieix P, Save V, De La Cueva MG, Laskey R, Fitzgerald RC (2007) Retinoic acid-induced glandular differentiation of the oesophagus. Gut 56:906–917PubMedGoogle Scholar
  32. Chow WH, Blaser MJ, Blot WJ, Gammon MD, Vaughan TL, Risch HA, Perez-Perez GI, ­Sch­oenberg JB, Stanford JL, Rotterdam H, West AB, Fraumeni JF Jr (1998) An inverse relation between cagA+ strains of Helicobacter pylori infection and risk of esophageal and gastric ­cardia adenocarcinoma. Cancer Res 58:588–590PubMedGoogle Scholar
  33. Christofori G, Semb H (1999) The role of the ­cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci 24:73–76PubMedGoogle Scholar
  34. Conio M, Filiberti R, Blanchi S, Ferraris R, Marchi S, Ravelli P, Lapertosa G, Iaquinto G, Sablich R, Gusmaroli R, Aste H, Giacosa A (2002) Risk factors for Barrett’s esophagus: a case-control study. Int J Cancer 97:225–229PubMedGoogle Scholar
  35. Cook MB, Greenwood DC, Hardie LJ, Wild CP, Forman D (2008) A systematic review and meta-analysis of the risk of increasing adiposity on Barrett’s esophagus. Am J Gastroenterol 103:292–300PubMedGoogle Scholar
  36. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337PubMedGoogle Scholar
  37. Couvelard A, Paraf F, Gratio V, Scoazec JY, Henin D, Degott C, Flejou JF (2000) Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 192:14–18PubMedGoogle Scholar
  38. Csendes A, Maluenda F, Braghetto I, Csendes P, Henriquez A, Quesada MS (1993) Location of the lower oesophageal sphincter and the squamous columnar mucosal junction in 109 healthy controls and 778 patients with different degrees of endoscopic oesophagitis. Gut 34:21–27PubMedGoogle Scholar
  39. De Lange T (2005) Telomere-related genome instability in cancer. Cold Spring Harb Symp Quant Biol 70:197–204PubMedGoogle Scholar
  40. DeMeester TR (2001) Clinical biology of the Barrett’s metaplasia, dysplasia to carcinoma sequence. Surg Oncol 10:91–102PubMedGoogle Scholar
  41. DeMeester SR, DeMeester TR (2000) Columnar mucosa and intestinal metaplasia of the eso­phagus: fifty years of controversy. Ann Surg 231:303–321PubMedGoogle Scholar
  42. Devesa SS, Blot WJ, Fraumeni JF Jr (1998) Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 83:2049–2053PubMedGoogle Scholar
  43. Dixon MF, Neville PM, Mapstone NP, Moayyedi P, Axon AT (2001) Bile reflux gastritis and Barrett’s oesophagus: further evidence of a role for ­duodenogastro-oesophageal reflux? Gut 49:359–363PubMedGoogle Scholar
  44. Drovdlic CM, Goddard KA, Chak A, Brock W, Chessler L, King JF, Richter J, Falk GW, Johnston DK, Fisher JL, Grady WM, Lemeshow S, Eng C (2003) Demographic and phenotypic features of 70 families segregating Barrett’s oesophagus and oesophageal adenocarcinoma. J Med Genet 40:651–656PubMedGoogle Scholar
  45. Eads CA, Lord RV, Wickramasinghe K, Long TI, Kurumboor SK, Bernstein L, Peters JH, De­Meester SR, DeMeester TR, Skinner KA, Laird PW (2001) Epigenetic patterns in the ­progression of esophageal adenocarcinoma. Cancer Res 61:3410–3418PubMedGoogle Scholar
  46. Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K (2003) Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol 38:14–22PubMedGoogle Scholar
  47. Fass R, Sampliner RE (2000) Extension of squamous epithelium into the proximal stomach: a newly recognized mucosal abnormality. Endoscopy 32:27–32PubMedGoogle Scholar
  48. Fass R, Hell RW, Garewal HS, Martinez P, Pulliam G, Wendel C, Sampliner RE (2001) Correlation of oesophageal acid exposure with Barrett’s oesophagus length. Gut 48:310–313PubMedGoogle Scholar
  49. Fitzgerald RC (2006) Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut 55:1810–1820PubMedGoogle Scholar
  50. Fountoulakis A, Martin IG, White KL, Dixon MF, Cade JE, Sue-Ling HM, Wild CP (2004) Plasma and esophageal mucosal levels of vitamin C: role in the pathogenesis and neoplastic progression of Barrett’s esophagus. Dig Dis Sci 49:914–919PubMedGoogle Scholar
  51. Galipeau PC, Cowan DS, Sanchez CA, Barrett MT, Emond MJ, Levine DS, Rabinovitch PS, Reid BJ (1996) 17p (p53) allelic losses, 4N (G2/tetraploid) populations, and progression to aneuploidy in Barrett’s esophagus. Proc Natl Acad Sci USA 93:7081–7084PubMedGoogle Scholar
  52. Garrigue-Antar L, Souza RF, Vellucci VF, Meltzer SJ, Reiss M (1996) Loss of transforming growth factor-beta type II receptor gene expression in primary human esophageal cancer. Lab Invest 75:263–272PubMedGoogle Scholar
  53. Geboes K, Desmet V (1978) Histology of the esophagus. Front Gastrointest Res 3:1–17PubMedGoogle Scholar
  54. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12:2973–2983PubMedGoogle Scholar
  55. Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP (1988) Experimental columnar metaplasia in the canine oesophagus. Br J Surg 75:113–115PubMedGoogle Scholar
  56. GOSPE (1991) Barrett’s esophagus: epidemiological and clinical results of a multicentric survey. Gruppo Operativo per lo Studio delle Pre­cancerosi dell’Esofago (GOSPE). Int J Cancer 48:364–368Google Scholar
  57. Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, Oukrif D, Leedham SJ, Deheragoda M, Sasieni P, Novelli MR, Jankowski JA, Turnbull DM, Wright NA, McDonald SA (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci USA 103:714–719PubMedGoogle Scholar
  58. Gronemeyer H, Miturski R (2001) Molecular mechanisms of retinoid action. Cell Mol Biol Lett 6:3–52PubMedGoogle Scholar
  59. Guillem PG (2005) How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci 50:415–424PubMedGoogle Scholar
  60. Haggitt RC (1994) Barrett’s esophagus, dysplasia, and adenocarcinoma. Hum Pathol 25:982–993PubMedGoogle Scholar
  61. Haggitt RC (2000) Pathology of Barrett’s esophagus. J Gastrointest Surg 4:117–118PubMedGoogle Scholar
  62. Haggitt RC, Reid BJ, Rabinovitch PS, Rubin CE (1988) Barrett’s esophagus. Correlation between mucin histochemistry, flow cytometry, and histologic diagnosis for predicting increased cancer risk. Am J Pathol 131:53–61PubMedGoogle Scholar
  63. Hamelin R, Flejou JF, Muzeau F, Potet F, Laurent-Puig P, Fekete F, Thomas G (1994) TP53 gene mutations and p53 protein immunoreactivity in malignant and premalignant Barrett’s esophagus. Gastroenterology 107:1012–1018PubMedGoogle Scholar
  64. Hampel H, Abraham NS, El-Serag HB (2005) Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med 143:199–211PubMedGoogle Scholar
  65. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  66. Hanby AM, Wright NA (1993) The ulcer-associated cell lineage: the gastrointestinal repair kit? J Pathol 171:3–4PubMedGoogle Scholar
  67. Hanby AM, Jankowski JA, Elia G, Poulsom R, Wright NA (1994) Expression of the trefoil peptides pS2 and human spasmolytic polypeptide (hSP) in Barrett’s metaplasia and the native oesophageal epithelium: delineation of epithelial phenotype. J Pathol 173:213–219PubMedGoogle Scholar
  68. Harmon JW, Johnson LF, Maydonovitch CL (1981) Effects of acid and bile salts on the rabbit esophageal mucosa. Dig Dis Sci 26:65–72PubMedGoogle Scholar
  69. Hay ED, Zuk A (1995) Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 26:678–690PubMedGoogle Scholar
  70. Hayward J (1961) The treatment of fibrous stricture of the oesophagus associated with hiatal hernia. Thorax 16:45–55PubMedGoogle Scholar
  71. Herrera LJ, El-Hefnawy T, Queiroz de Oliveira PE, Raja S, Finkelstein S, Gooding W, Luketich JD, Godfrey TE, Hughes SJ (2005) The HGF receptor c-Met is overexpressed in esophageal adenocarcinoma. Neoplasia 7:75–84PubMedGoogle Scholar
  72. Hiyama T, Yoshihara M, Tanaka S, Chayama K (2007) Genetic polymorphisms and esophageal cancer risk. Int J Cancer 121:1643–1658PubMedGoogle Scholar
  73. Hopwood D, Milne G, Logan KR (1979) Electron microscopic changes in human oesophageal epithelium in oesophagitis. J Pathol 129:161–167PubMedGoogle Scholar
  74. Iascone C, DeMeester TR, Little AG, Skinner DB (1983) Barrett’s esophagus. Functional assessment, proposed pathogenesis, and surgical therapy. Arch Surg 118:543–549PubMedGoogle Scholar
  75. Iijima K, Grant J, McElroy K, Fyfe V, Preston T, McColl KE (2003) Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Carcinogenesis 24:1951–1960PubMedGoogle Scholar
  76. Ireland AP, Shibata DK, Chandrasoma P, Lord RV, Peters JH, DeMeester TR (2000) Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg 231:179–187PubMedGoogle Scholar
  77. Jankowski J, Hoopwood D, Dover R, Wormsley KG (1992) Development and growth of normal, metaplastic and dysplastic oesophageal mucosa: biological markers of neoplasia. Eur J Gas­troeneterol Hepatol 5:12Google Scholar
  78. Jankowski JA, Wright NA, Meltzer SJ, Triadafilopoulos G, Geboes K, Casson AG, Kerr D, Young LS (1999) Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol 154:965–973PubMedGoogle Scholar
  79. Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C (2000) Barrett’s metaplasia. Lancet 356:2079–2085PubMedGoogle Scholar
  80. Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T (2005) Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 53:35–69PubMedGoogle Scholar
  81. Jimenez P, Piazuelo E, Sanchez MT, Ortego J, Soteras F, Lanas A (2005) Free radicals and ­antioxidant systems in reflux esophagitis and Barrett’s esophagus. World J Gastroenterol 11:2697–2703PubMedGoogle Scholar
  82. Johansson J, Hakansson HO, Mellblom L, Kempas A, Johansson KE, Granath F, Nyren O (2007) Risk factors for Barrett’s oesophagus: a population-based approach. Scand J Gastroenterol 42:148–156PubMedGoogle Scholar
  83. Johns BA (1952) Developmental changes in the oesophageal epithelium in man. J Anat 86:431–442PubMedGoogle Scholar
  84. Jones BE, Lo CR, Liu H, Pradhan Z, Garcia L, Srinivasan A, Valentino KL, Czaja MJ (2000) Role of caspases and NF-kappaB signaling in hydrogen peroxide- and superoxide-induced hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 278:G693–G699PubMedGoogle Scholar
  85. Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA (1995) Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 222:525–531; discussion 531–523Google Scholar
  86. Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Fleisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg PV, Meltzer SJ (2000) Hyper­methylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92:1805–1811PubMedGoogle Scholar
  87. Kerkhof M, Kusters JG, van Dekken H, Kuipers EJ, Siersema PD (2007) Biomarkers for risk stratification of neoplastic progression in Barrett esophagus. Cell Oncol 29:507–517PubMedGoogle Scholar
  88. Khalbuss WE, Marousis CG, Subramanyam M, Orlando RC (1995) Effect of HCl on transmembrane potentials and intracellular pH in rabbit esophageal epithelium. Gastroenterology 108:662–672PubMedGoogle Scholar
  89. Kivilaakso E, Fromm D, Silen W (1980) Effect of bile salts and related compounds on isolated esophageal mucosa. Surgery 87:280–285PubMedGoogle Scholar
  90. Klump B, Hsieh CJ, Holzmann K, Gregor M, Porschen R (1998) Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 115:1381–1386PubMedGoogle Scholar
  91. Koike N, Higuchi T, Sakai Y (1990) Goblet-like cells in atrophic vaginal smears and their histologic correlation. Possible confusion with endocervical cells. Acta Cytol 34:785–788PubMedGoogle Scholar
  92. Krishnadath KK, Tilanus HW, van Blankenstein M, Hop WC, Kremers ED, Dinjens WN, Bosman FT (1997) Reduced expression of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis. J Pathol 182:331–338PubMedGoogle Scholar
  93. Kubo A, Levin TR, Block G, Rumore GJ, Que­senberry CP Jr, Buffler P, Corley DA (2008) Dietary patterns and the risk of Barrett’s esophagus. Am J Epidemiol 167:839–846PubMedGoogle Scholar
  94. Kyrgidis A, Kountouras J, Zavos C, Chatzopoulos D (2005) New molecular concepts of Barrett’s esophagus: clinical implications and biomarkers. J Surg Res 125:189–212PubMedGoogle Scholar
  95. Lagarde SM, ten Kate FJ, Richel DJ, Offerhaus GJ, van Lanschot JJ (2007) Molecular prognostic factors in adenocarcinoma of the esophagus and gastroesophageal junction. Ann Surg Oncol 14:977–991PubMedGoogle Scholar
  96. Li H, Walsh TN, O’Dowd G, Gillen P, Byrne PJ, Hennessy TP (1994) Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett’s esophagus. Surgery 115:176–181PubMedGoogle Scholar
  97. Lin L, Prescott MS, Zhu Z, Singh P, Chun SY, Kuick RD, Hanash SM, Orringer MB, Glover TW, Beer DG (2000) Identification and characterization of a 19q12 amplicon in esophageal adenocarcinomas reveals cyclin E as the best candidate gene for this amplicon. Cancer Res 60:7021–7027PubMedGoogle Scholar
  98. Liu RH, Hotchkiss JH (1995) Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res 339:73–89PubMedGoogle Scholar
  99. Lord RV, Salonga D, Danenberg KD, Peters JH, DeMeester TR, Park JM, Johansson J, Skinner KA, Chandrasoma P, DeMeester SR, Bremner CG, Tsai PI, Danenberg PV (2000) Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 4:135–142PubMedGoogle Scholar
  100. Lord RV, Brabender J, Wickramasinghe K, DeMeester SR, Holscher A, Schneider PM, Danenberg PV, DeMeester TR (2005) Increased CDX2 and decreased PITX1 homeobox gene expression in Barrett’s esophagus and Barrett’s-associated adenocarcinoma. Surgery 138:924–931PubMedGoogle Scholar
  101. Maley CC, Reid BJ (2005) Natural selection in neoplastic progression of Barrett’s esophagus. Semin Cancer Biol 15:474–483PubMedGoogle Scholar
  102. Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64:3414–3427PubMedGoogle Scholar
  103. Malfertheiner P, Peitz U (2005) The interplay between Helicobacter pylori, gastro-oesophageal reflux disease, and intestinal metaplasia. Gut 54(Suppl 1):i13–i20PubMedGoogle Scholar
  104. Marshall RE, Anggiansah A, Owen WA, Owen WJ (1997) The relationship between acid and bile reflux and symptoms in gastro-oesophageal reflux disease. Gut 40:182–187PubMedGoogle Scholar
  105. Mates JM, Perez-Gomez C, Nunez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603PubMedGoogle Scholar
  106. McColl KE (2005) When saliva meets acid: chemical warfare at the oesophagogastric junction. Gut 54:1–3PubMedGoogle Scholar
  107. Menke-Pluymers MB, Mulder AH, Hop WC, van Blankenstein M, Tilanus HW (1994) Dysplasia and aneuploidy as markers of malignant degeneration in Barrett’s oesophagus. The Rotterdam Oesophageal Tumour Study Group. Gut 35:1348–1351PubMedGoogle Scholar
  108. Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, Rosmolen WD, Bergman JJ, VAM J, Wang KK, Peppelenbosch MP, Kris­hnadath KK (2007) Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology 132:2412–2421PubMedGoogle Scholar
  109. Mittal RK, Balaban DH (1997) The esophagogastric junction. N Engl J Med 336:924–932PubMedGoogle Scholar
  110. Mittal RK, Lange RC, McCallum RW (1987) Identification and mechanism of delayed esophageal acid clearance in subjects with hiatus hernia. Gastroenterology 92:130–135PubMedGoogle Scholar
  111. Moayyedi P (2008) Barrett’s esophagus and obesity: the missing part of the puzzle. Am J Gastroenterol 103:301–303PubMedGoogle Scholar
  112. Mobius C, Stein HJ, Becker I, Feith M, Theisen J, Gais P, Jutting U, Siewert JR (2003) The ‘angiogenic switch’ in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Eur J Surg Oncol 29:890–894PubMedGoogle Scholar
  113. Mobius C, Stein HJ, Spiess C, Becker I, Feith M, Theisen J, Gais P, Jutting U, Siewert JR (2005) COX2 expression, angiogenesis, proliferation and survival in Barrett’s cancer. Eur J Surg Oncol 31:755–759PubMedGoogle Scholar
  114. Moersch RN, Ellis FH Jr, Mc DJ (1959) Pathologic changes occurring in severe reflux esophagitis. Surg Gynecol Obstet 108:476–484PubMedGoogle Scholar
  115. Montgomery EA, Hartmann DP, Carr NJ, Holterman DA, Sobin LH, Azumi N (1996) Barrett eso­phagus with dysplasia. Flow cytometric DNA analysis of routine, paraffin-embedded mucosal bio­psies. Am J Clin Pathol 106:298–304PubMedGoogle Scholar
  116. Montgomery RK, Mulberg AE, Grand RJ (1999) Development of the human gastrointestinal tract: twenty years of progress. Gastroenterology 116:702–731PubMedGoogle Scholar
  117. Moons LM, Bax DA, Kuipers EJ, Van Dekken H, Haringsma J, Van Vliet AH, Siersema PD, Kusters JG (2004) The homeodomain protein CDX2 is an early marker of Barrett’s oesophagus. J Clin Pathol 57:1063–1068PubMedGoogle Scholar
  118. Morales CP, Souza RF, Spechler SJ (2002) Hall­marks of cancer progression in Barrett’s oesophagus. Lancet 360:1587–1589PubMedGoogle Scholar
  119. Morris CD, Armstrong GR, Bigley G, Green H, Attwood SE (2001) Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Am J Gastroenterol 96:990–996PubMedGoogle Scholar
  120. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234PubMedGoogle Scholar
  121. Nair KS, Naidoo R, Chetty R (2005) Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J Clin Pathol 58:343–351PubMedGoogle Scholar
  122. Nehra D, Howell P, Williams CP, Pye JK, Beynon J (1999) Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 44:598–602PubMedGoogle Scholar
  123. Neumann CS, Cooper BT (1994) 24 hour ambulatory oesophageal pH monitoring in uncomplicated Barrett’s oesophagus. Gut 35:1352–1355PubMedGoogle Scholar
  124. O’Riordan JM, Abdel-latif MM, Ravi N, McNamara D, Byrne PJ, McDonald GS, Keeling PW, Kelleher D, Reynolds JV (2005) Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol 100:1257–1264PubMedGoogle Scholar
  125. Olliver JR, Hardie LJ, Gong Y, Dexter S, Chalmers D, Harris KM, Wild CP (2005) Risk factors, DNA damage, and disease progression in Bar­rett’s esophagus. Cancer Epidemiol Biomarkers Prev 14:620–625PubMedGoogle Scholar
  126. Park YS, Park HJ, Kang GH, Kim CJ, Chi JG (2003) Histology of gastroesophageal junction in fetal and pediatric autopsy. Arch Pathol Lab Med 127:451–455PubMedGoogle Scholar
  127. Paull A, Trier JS, Dalton MD, Camp RC, Loeb P, Goyal RK (1976) The histologic pectrum of Barrett’s esophagus. N Engl J Med 295:476–480PubMedGoogle Scholar
  128. Pera M, Brito MJ, Poulsom R, Riera E, Grande L, Hanby A, Wright NA (2000) Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats. Carcinogenesis 21:1587–1591PubMedGoogle Scholar
  129. Phillips RW, Frierson HF Jr, Moskaluk CA (2003) Cdx2 as a marker of epithelial intestinal ­differentiation in the esophagus. Am J Surg Pathol 27:1442–1447PubMedGoogle Scholar
  130. Powell SM, Papadopoulos N, Kinzler KW, Smo­linski KN, Meltzer SJ (1994) APC gene mutations in the mutation cluster region are rare in esophageal cancers. Gastroenterology 107:1759–1763PubMedGoogle Scholar
  131. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126PubMedGoogle Scholar
  132. Radominska-Pandya A, Chen G (2002) Photoaffinity labeling of human retinoid X receptor beta (RXRbeta) with 9-cis-retinoic acid: identification of phytanic acid, docosahexaenoic acid, and lithocholic acid as ligands for RXRbeta. Bio­chemistry 41:4883–4890PubMedGoogle Scholar
  133. Rastogi A, Puli S, El-Serag HB, Bansal A, Wani S, Sharma P (2008) Incidence of esophageal adenocarcinoma in patients with Barrett’s esophagus and high-grade dysplasia: a meta-analysis. Gastrointest Endosc 67:394–398PubMedGoogle Scholar
  134. Rees JR, Onwuegbusi BA, Save VE, Alderson D, Fitzgerald RC (2006) In vivo and in vitro evidence for transforming growth factor-beta1-mediated epithelial to mesenchymal transition in esophageal adenocarcinoma. Cancer Res 66:9583–9590PubMedGoogle Scholar
  135. Ribeiro U Jr, Finkelstein SD, Safatle-Ribeiro AV, Landreneau RJ, Clarke MR, Bakker A, Swalsky PA, Gooding WE, Posner MC (1998) p53 sequence analysis predicts treatment response and outcome of patients with esophageal carcinoma. Cancer 83:7–18PubMedGoogle Scholar
  136. Richter JE (2000) Importance of bile reflux in Barrett’s esophagus. Dig Dis 18:208–216PubMedGoogle Scholar
  137. Robert V, Michel P, Flaman JM, Chiron A, Martin C, Charbonnier F, Paillot B, Frebourg T (2000) High frequency in esophageal cancers of p53 alterations inactivating the regulation of genes involved in cell cycle and apoptosis. Car­cinogenesis 21:563–565PubMedGoogle Scholar
  138. Rochat A, Kobayashi K, Barrandon Y (1994) Location of stem cells of human hair follicles by clonal analysis. Cell 76:1063–1073PubMedGoogle Scholar
  139. Romero Y, Cameron AJ, Locke GR 3rd, Schaid DJ, Slezak JM, Branch CD, Melton LJ 3rd (1997) Familial aggregation of gastroesophageal reflux in patients with Barrett’s esophagus and esophageal adenocarcinoma. Gastroenterology 113:1449–1456PubMedGoogle Scholar
  140. Safaie-Shirazi S (1977) Effect of pepsin on ionic permeability of canine esophageal mucosa. J Surg Res 22:5–8PubMedGoogle Scholar
  141. Salo JA, Lehto VP, Kivilaakso E (1983) Mor­phological alterations in experimental esophagitis. Light microscopic and scanning and trans­mission electron microscopic study. Dig Dis Sci 28:440–448PubMedGoogle Scholar
  142. Sampliner RE (1998) Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The Practice Parameters Committee of the American College of Gastroenterology. Am J Gastroenterol 93:1028–1032PubMedGoogle Scholar
  143. Sappati Biyyani RS, Chessler L, McCain E, Nelson K, Fahmy N, King J (2007) Familial trends of inheritance in gastro esophageal reflux disease, Barrett’s esophagus and Barrett’s adenocarcinoma: 20 families. Dis Esophagus 20:53–57PubMedGoogle Scholar
  144. Sarbia M, Bektas N, Muller W, Heep H, Borchard F, Gabbert HE (1999) Expression of cyclin E in dysplasia, carcinoma, and nonmalignant lesions of Barrett esophagus. Cancer 86:2597–2601PubMedGoogle Scholar
  145. Sarosi G, Brown G, Jaiswal K, Feagins LA, Lee E, Crook TW, Souza RF, Zou YS, Shay JW, Spechler SJ (2008) Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus 21:43–50PubMedGoogle Scholar
  146. Sawhney RA, Shields HM, Allan CH, Boch JA, Trier JS, Antonioli DA (1996) Morphological characterization of the squamocolumnar junction of the esophagus in patients with and without Barrett’s epithelium. Dig Dis Sci 41:1088–1098PubMedGoogle Scholar
  147. Schmidt PH, Lee JR, Joshi V, Playford RJ, Poulsom R, Wright NA, Goldenring JR (1999) Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest 79:639–646PubMedGoogle Scholar
  148. Schneider PM, Stoeltzing O, Roth JA, Hoelscher AH, Wegerer S, Mizumoto S, Becker K, Dittler HJ, Fink U, Siewert JR (2000) P53 mutational status improves estimation of prognosis in patients with curatively resected adenocarcinoma in Barrett’s esophagus. Clin Cancer Res 6:3153–3158PubMedGoogle Scholar
  149. Schorah CJ, Sobala GM, Sanderson M, Collis N, Primrose JN (1991) Gastric juice ascorbic acid: effects of disease and implications for gastric carcinogenesis. Am J Clin Nutr 53:287S–293SPubMedGoogle Scholar
  150. Seery JP (2002) Stem cells of the oesophageal epithelium. J Cell Sci 115:1783–1789PubMedGoogle Scholar
  151. Seery JP, Watt FM (2000) Asymmetric stem-cell divisions define the architecture of human oesophageal epithelium. Curr Biol 10:1447–1450PubMedGoogle Scholar
  152. Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS (2000) Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119:333–338PubMedGoogle Scholar
  153. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791PubMedGoogle Scholar
  154. Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ (1993) Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci 38:97–108PubMedGoogle Scholar
  155. Shirvani VN, Ouatu-Lascar R, Kaur BS, Omary MB, Triadafilopoulos G (2000) Cyclooxygenase 2 expression in Barrett’s esophagus and adenocarcinoma: Ex vivo induction by bile salts and acid exposure. Gastroenterology 118:487–496PubMedGoogle Scholar
  156. Singh AB, Harris RC (2005) Autocrine, paracrine and juxtacrine signaling by EGFR ligands. Cell Signal 17:1183–1193PubMedGoogle Scholar
  157. Singh P, Taylor RH, Colin-Jones DG (1994) Esophageal motor dysfunction and acid exposure in reflux esophagitis are more severe if Barrett’s metaplasia is present. Am J Gas­troenterol 89:349–356PubMedGoogle Scholar
  158. Sital RR, Kusters JG, De Rooij FW, Kuipers EJ, Siersema PD (2006) Bile acids and Barrett’s oesophagus: a sine qua non or coincidence? Scand J Gastroenterol Suppl:11–17Google Scholar
  159. Slack JM (2000) Stem cells in epithelial tissues. Science 287:1431–1433PubMedGoogle Scholar
  160. Sloan S, Kahrilas PJ (1991) Impairment of esophageal emptying with hiatal hernia. Gastroenterology 100:596–605PubMedGoogle Scholar
  161. Sloan S, Rademaker AW, Kahrilas PJ (1992) Deter­minants of gastroesophageal junction incompetence: hiatal hernia, lower esophageal sphincter, or both? Ann Intern Med 117:977–982PubMedGoogle Scholar
  162. Smedts F, Ramaekers FC, Vooijs PG (1993) The dynamics of keratin expression in malignant transformation of cervical epithelium: a review. Obstet Gynecol 82:465PubMedGoogle Scholar
  163. Sodhani P, Gupta S, Prakash S, Singh V (1999) Columnar and metaplastic cells in vault smears: cytologic and colposcopic study. Cytopathology 10:122–126; discussion 131Google Scholar
  164. Souza RF, Garrigue-Antar L, Lei J, Yin J, Appel R, Vellucci VF, Zou TT, Zhou X, Wang S, Rhyu MG, Cymes K, Chan O, Park WS, Krasna MJ, Greenwald BD, Cottrell J, Abraham JM, Simms L, Leggett B, Young J, Harpaz N, Reiss M, Meltzer SJ (1996) Alterations of transforming growth factor-beta 1 receptor type II occur in ulcerative colitis-associated carcinomas, sporadic colorectal neoplasms, and esophageal carcinomas, but not in gastric neoplasms. Hum Cell 9:229–236PubMedGoogle Scholar
  165. Souza RF, Morales CP, Spechler SJ (2001) Review article: a conceptual approach to understanding the molecular mechanisms of cancer development in Barrett’s oesophagus. Aliment Pharmacol Ther 15:1087–1100PubMedGoogle Scholar
  166. Spechler SJ, Goyal RK (1986) Barrett’s esophagus. N Engl J Med 315:362–371PubMedGoogle Scholar
  167. Stein HJ, Siewert JR (1993) Barrett’s esophagus: pathogenesis, epidemiology, functional abnormalities, malignant degeneration, and surgical management. Dysphagia 8:276–288PubMedGoogle Scholar
  168. Stein HJ, DeMeester TR, Naspetti R, Jamieson J, Perry RE (1991) Three-dimensional imaging of the lower esophageal sphincter in gastroesophageal reflux disease. Ann Surg 214:374–383; discussion 383–374Google Scholar
  169. Stein HJ, Barlow AP, DeMeester TR, Hinder RA (1992) Complications of gastroesophageal re­flux disease. Role of the lower esophageal sphincter, esophageal acid and acid/alkaline exposure, and duodenogastric reflux. Ann Surg 216:35–43PubMedGoogle Scholar
  170. Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE (2005) Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut 54:1527–1535PubMedGoogle Scholar
  171. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454PubMedGoogle Scholar
  172. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15:740–746PubMedGoogle Scholar
  173. Thomas T, Abrams KR, De Caestecker JS, Robinson RJ (2007) Meta analysis: cancer risk in Barrett’s oesophagus. Aliment Pharmacol Ther 26:1465–1477PubMedGoogle Scholar
  174. Tosh D, Slack JM (2002) How cells change their phenotype. Nat Rev Mol Cell Biol 3:187–194PubMedGoogle Scholar
  175. Tuynman JB, Buskens CJ, Kemper K, ten Kate FJ, Offerhaus GJ, Richel DJ, van Lanschot JJ (2005) Neoadjuvant selective COX-2 inhibition down-regulates important oncogenic pathways in patients with esophageal adenocarcinoma. Ann Surg 242:840–849, discussion 849–850Google Scholar
  176. Tuynman JB, Lagarde SM, Ten Kate FJ, Richel DJ, van Lanschot JJ (2008) Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma. Br J Cancer 98:1102–1108PubMedGoogle Scholar
  177. Tytgat GN (1995) Does endoscopic surveillance in esophageal columnar metaplasia (Barrett’s eso­phagus) have any real value? Endoscopy 27:19–26PubMedGoogle Scholar
  178. Vaezi MF, Richter JE (1995) Synergism of acid and duodenogastroesophageal reflux in complicated Barrett’s esophagus. Surgery 117:699–704PubMedGoogle Scholar
  179. Vaezi MF, Richter JE (1996) Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111:1192–1199PubMedGoogle Scholar
  180. van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, Wang KK, Peppelenbosch MP, Krishnadath KK (2005) A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gas­troenterology 129:1274–1281PubMedGoogle Scholar
  181. van Baal JW, Bozikas A, Pronk R, Ten Kate FJ, Milano F, Rygiel AM, Rosmolen WD, Peppelenbosch MP, Bergman JJ, Krishnadath KK (2008) Cytokeratin and CDX-2 expression in Barrett’s esophagus. Scand J Gastroenterol 43:132–140PubMedGoogle Scholar
  182. Vizcaino AP, Moreno V, Lambert R, Parkin DM (2002) Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973-1995. Int J Cancer 99:860–868PubMedGoogle Scholar
  183. von Rahden BH, Stein HJ, Feith M, Puhringer F, Theisen J, Siewert JR, Sarbia M (2006) Overexpression of TGF-beta1 in esophageal (Barrett’s) adenocarcinoma is associated with advanced stage of disease and poor prognosis. Mol Carcinog 45:786–794Google Scholar
  184. Wang KL, Wu TT, Choi IS, Wang H, Reseetkova E, Correa AM, Hofstetter WL, Swisher SG, Ajani JA, Rashid A, Albarracin CT (2007) Expression of epidermal growth factor receptor in esophageal and esophagogastric junction adenocarcinomas: association with poor outcome. Cancer 109:658–667PubMedGoogle Scholar
  185. Wetscher GJ, Hinder RA, Bagchi D, Hinder PR, Bagchi M, Perdikis G, McGinn T (1995) Reflux esophagitis in humans is mediated by oxygen-derived free radicals. Am J Surg 170:552–556; discussion 556–557Google Scholar
  186. Wijnhoven BP, Dinjens WN, Pignatelli M (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87:992–1005PubMedGoogle Scholar
  187. Wijnhoven BP, Tilanus HW, Dinjens WN (2001) Molecular biology of Barrett’s adenocarcinoma. Ann Surg 233:322–337PubMedGoogle Scholar
  188. Wild CP, Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3:676–684PubMedGoogle Scholar
  189. Wilkinson NW, Black JD, Roukhadze E, Driscoll D, Smiley S, Hoshi H, Geradts J, Javle M, Brattain M (2004) Epidermal growth factor receptor expression correlates with histologic grade in resected esophageal adenocarcinoma. J Gas­trointest Surg 8:448–453PubMedGoogle Scholar
  190. Williams LJ, Guernsey DL, Casson AG (2006) Biomarkers in the molecular pathogenesis of esophageal (Barrett) adenocarcinoma. Curr Oncol 13:33–43PubMedGoogle Scholar
  191. Wilson KT, Fu S, Ramanujam KS, Meltzer SJ (1998) Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 58:2929–2934PubMedGoogle Scholar
  192. Winters C Jr, Spurling TJ, Chobanian SJ, Curtis DJ, Esposito RL, Hacker JF 3rd, Johnson DA, Cruess DF, Cotelingam JD, Gurney MS et al (1987) Barrett’s esophagus. A prevalent, occult complication of gastroesophageal reflux disease. Gastroenterology 92:118–124PubMedGoogle Scholar
  193. Wright NA (1996) Migration of the ductular elements of gut-associated glands gives clues to the histogenesis of structures associated with responses to acid hypersecretory state: the origins of “gastric metaplasia” in the duodenum of the specialized mucosa of Barrett’s esophagus and of pseudopyloric metaplasia. Yale J Biol Med 69:147–153PubMedGoogle Scholar
  194. Yacoub L, Goldman H, Odze RD (1997) Trans­forming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett’s-associated neoplasia: correlation with prognosis. Mod Pathol 10:105–112PubMedGoogle Scholar
  195. Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142PubMedGoogle Scholar
  196. Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 270:31315–31320PubMedGoogle Scholar
  197. Younes M, Lebovitz RM, Lechago LV, Lechago J (1993) p53 protein accumulation in Barrett’s metaplasia, dysplasia, and carcinoma: a follow-up study. Gastroenterology 105:1637–1642PubMedGoogle Scholar
  198. Yousef F, Cardwell C, Cantwell MM, Galway K, Johnston BT, Murray L (2008) The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-analysis. Am J Epidemiol 168:237–249PubMedGoogle Scholar
  199. Yu WY, Slack JM, Tosh D (2005) Conversion of columnar to stratified squamous epithelium in the developing mouse oesophagus. Dev Biol 284:157–170PubMedGoogle Scholar
  200. Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P Jr, Razak F, Sharma AM, Anand SS (2005) Obesity and the risk of myocardial infarction in 27, 000 participants from 52 countries: a case-control study. Lancet 366:1640–1649PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Brechtje A. Grotenhuis
    • 1
    Email author
  • J. Jan B. van Lanschot
  • Winand N. M. Dinjens
  • Bas P. L. Wijnhoven
  1. 1.Department of Surgery, Erasmus MCUniversity Medical CenterRotterdamThe Netherlands

Personalised recommendations