Skip to main content

All-Pairs Shortest Paths with a Sublinear Additive Error

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

Abstract

We show that for every 0 ≤ p ≤ 1 there is an algorithm with running time of O(n 2.575 − p/(7.4 − 2.3p)) that given a directed graph with small positive integer weights, estimates the length of the shortest path between every pair of vertices u,v in the graph to within an additive error δ p(u,v), where δ(u,v) is the exact length of the shortest path between u and v. This algorithm runs faster than the fastest algorithm for computing exact shortest paths for any 0 < p ≤ 1.

Previously the only way to “bit” the running time of the exact shortest path algorithms was by applying an algorithm of Zwick [FOCS ’98] that approximates the shortest path distances within a multiplicative error of (1 + ε). Our algorithm thus gives a smooth qualitative and quantitative transition between the fastest exact shortest paths algorithm, and the fastest approximation algorithm with a linear additive error. In fact, the main ingredient we need in order to obtain the above result, which is also interesting in its own right, is an algorithm for computing (1 + ε) multiplicative approximations for the shortest paths, whose running time is faster than the running time of Zwick’s approximation algorithm when ε ≪ 1 and the graph has small integer weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM Journal on Computing 28, 1167–1181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. Journal of Computer ans System Sciences 54, 255–262 (1997); Also, Proc. of FOCS 1991

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proc. of STOC 2007 (to appear, 2007)

    Google Scholar 

  5. Coppersmith, D.: Rectangular matrix multiplication revisited. Journal of Complexity 13, 42–49 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9, 251–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cormen, T.H., Leisserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)

    Google Scholar 

  8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. SIAM Journal on Computing 29, 1740–1759 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czumaj, A., Kowaluk, M., Lingas, A.: Faster algorithms for finding lowest common ancestors in directed acyclic graphs (manuscript, 2006)

    Google Scholar 

  11. Fischer, M.J., Meyer, A.R.: Boolean matrix multiplication and transitive closure. In: Proc. of the 12th Symposium on Switching and Automata Theory, East Lansing, Mich., pp. 129–131 (1971)

    Google Scholar 

  12. Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM Journal on Computing 5, 49–60 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  14. Furman, M.E.: Application of a method of fast multiplication of matrices in the problem of finding the transitive closure of a graph. Dokl. Akad. Nauk SSSR 11(5), 1252 (1970)

    MATH  Google Scholar 

  15. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length edges. Information and Computation 134, 103–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. Journal of Computer and System Sciences 54, 243–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gabow, H.N., Tarjan, R.E.: Algorithms for two bottleneck optimization problems. Journal of Algorithms 9, 411–417 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and applications. Journal of Complexity 14, 257–299 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Munro, I.: Efficient determination of the strongly connected components and the transitive closure of a graph. Univ. of Toronto, Toronto, Canada (1971) (unpublished manuscript)

    Google Scholar 

  20. Seidel, R.: On the All-Pairs-Shortest-Path Problem in Unweighted Undirected Graphs. J. Comput. Syst. Sci. 51, 400–403 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proc. of FOCS 1999, pp. 605–614 (1999)

    Google Scholar 

  22. Thorup, M., Zwick, U.: Approximate distance oracles. Journal of the ACM 52, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yuval, G.: An algorithm for finding all shortest paths using N 2.81 infinite-precision multiplications. Information Processing Letters 4, 155–156 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM 49, 289–317 (2002); Also, Proc. of FOCS 1998

    Article  MathSciNet  MATH  Google Scholar 

  25. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roditty, L., Shapira, A. (2008). All-Pairs Shortest Paths with a Sublinear Additive Error. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics