Skip to main content

From Goals to Habits – A View from the Network

  • Chapter
From Attention to Goal-Directed Behavior
  • 642 Accesses

Imaging and lesion studies support the view that goal-oriented and routine behaviors are supported by different mechanisms. While the execution of routine behaviors can be achieved autonomously by posterior cortical networks, which include sensory and motor areas, the orchestration of complex goal-directed behaviors requires the interaction of prefrontal networks with the posterior system. These interactions are thought to be the neural signature of supervisory attention to action. It is believed that this interaction can serve as a scaffold for the formation of habits and skills. After extensive practice, learned behaviors become resistant to reward devaluation and can execute seamlessly without attentional supervision. Here I review candidate mechanisms at the network and cellular levels that can explain these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience,13, 266–271

    Article  CAS  Google Scholar 

  • Alexander, G. E., & Fuster, J. M. (1973). Effects of cooling prefrontal cortex on cell firing in the nucleus medialis dorsalis. Brain Research,61, 93–105

    Article  PubMed  CAS  Google Scholar 

  • Aron, A. R., & Poldrack, R. A. (2006). Cortical and subcortical contributions to Stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience,26, 2424–2433

    Article  PubMed  CAS  Google Scholar 

  • Averbeck, B. B., Chafee, M. V., Crowe, D. A., & Georgopoulos, A. P. (2002). Parallel processing of serial movements in prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America,99, 13172–13177

    Article  PubMed  CAS  Google Scholar 

  • Bacci, A., Huguenard, J. R., & Prince, D. A. (2005). Modulation of neocortical interneurons: Extrinsic influences and exercises in self-control. Trends in Neuroscience,28, 602–610

    Article  CAS  Google Scholar 

  • Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology,37, 407–419

    Article  PubMed  CAS  Google Scholar 

  • Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. Journal of Neuroscience,27, 8161–8165

    Article  PubMed  CAS  Google Scholar 

  • Bar-Gad, I., Havazelet-Heimer, G., Goldberg, J. A., Ruppin, E., & Bergman, H. (2000). Reinforcement-driven dimensionality reduction — a model for information processing in the basal ganglia. Journal of Basic and Clinical Physiology and Pharmacology,11, 305–320

    PubMed  CAS  Google Scholar 

  • Bolam, J. P., Hanley, J. J., Booth, P. A., & Bevan, M. D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy,196 (Pt 4), 527–542

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg, V. (1978). Cell assemblies in the cerebral cortex. In R. Heim & G. Palm (Ed.), Theoretical approaches to complex systems — Lecture notes in biomathematics(pp. 171–188). New York: Springer

    Google Scholar 

  • Bressler, S. L. (1995). Large-scale cortical networks and cognition. Brain Research. Brain Research Review,20, 288–304

    Article  CAS  Google Scholar 

  • Brody, C. D., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: Discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology,13, 204–211

    Article  PubMed  CAS  Google Scholar 

  • Brunel, N., & Wang, X. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of Neurophysiology,90, 415–430

    Article  PubMed  Google Scholar 

  • Butler, A. B., & Cotterill, R. M. J. (2006). Mammalian and avian neuroanatomy and the question of consciousness in birds. Biology Bulletin,211, 106–127

    Article  Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain. New York: Oxford University Press

    Google Scholar 

  • Carpenter, A. F., Georgopoulos, A. P., & Pellizzer, G. (1999). Motor cortical encoding of serial order in a context-recall task. Science,283, 1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Cepeda, C., Buchwald, N. A., & Levine, M. S. (1993). Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proceedings of the National Academy of Sciences of the United States of America,90, 9576–9580

    Article  PubMed  CAS  Google Scholar 

  • Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron,35, 773–782

    Article  PubMed  CAS  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: Specification of multiple direction choices and final selection of action. Neuron,45, 801–814

    Article  PubMed  CAS  Google Scholar 

  • Cohen, D., & Nicolelis, M. A. L. (2004). Reduction of single-neuron firing uncertainty by cortical ensembles during motor skill learning. Journal of Neuroscience,24, 3574–3582

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. D., Braver, T. S., & Brown, J. W. (2002). Computational perspectives on dopamine function in prefrontal cortex. Current Opinion in Neurobiology,12, 223–229

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis, C., & Goldman-Rakic, P. S. (2002). Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. Journal of Neurophysiology,88, 3487–3497

    Article  PubMed  Google Scholar 

  • Cooke, D. F., Taylor, C. S. R., Moore, T., & Graziano, M. S. A. (2003). Complex movements evoked by microstimulation of the ventral intraparietal area. Proceedings of the National Academy of Sciences of the United States of America,100, 6163–6168

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychology Review,113, 887–916; discussion 917–31

    Article  Google Scholar 

  • Cossette, M., Lévesque, M., & Parent, A. (1999). Extrastriatal dopaminergic innervation of human basal ganglia. Neuroscience Research,34, 51–54

    Article  PubMed  CAS  Google Scholar 

  • Costa, R. M., Cohen, D., & Nicolelis, M. A. L. (2004). Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Current Biology,14, 1124–1134

    Article  PubMed  CAS  Google Scholar 

  • Crutcher, M. D., & Alexander, G. E. (1990). Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology,64, 151–163

    PubMed  CAS  Google Scholar 

  • Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London — Series B Biological Science,353, 1245–1255

    Article  CAS  Google Scholar 

  • Dickinson, A. (1985). Actions and habits: The development of behavioural autonomy. Philosophical Transctions of the Royal Society of London — Series B,308, 67–78

    Article  Google Scholar 

  • Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology,83, 1733–1750

    PubMed  CAS  Google Scholar 

  • Edelman, G. (1987). Neural darwinism. New York: Basic Books

    Google Scholar 

  • Egorov, A. V., Hamam, B. N., Fransén, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature,420, 173–178

    Article  PubMed  CAS  Google Scholar 

  • Freiwald, W. A., Kreiter, A. K., & Singer, W. (2001). Synchronization and assembly formation in the visual cortex. Progress in Brain Research,130, 111–140

    Article  PubMed  CAS  Google Scholar 

  • Friston, K. J. (2000). The labile brain. II. Transients, complexity and selection. Philosophical Transactions of the Royal Society of London — Series B Biological Science,355, 237–252

    Article  CAS  Google Scholar 

  • Funahashi, S., & Inoue, M. (2000). Neuronal interactions related to working memory processes in the primate prefrontal cortex revealed by cross-correlation analysis. Cerebral Cortex, 10, 535–551

    Article  PubMed  CAS  Google Scholar 

  • Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology,36, 61–78

    PubMed  CAS  Google Scholar 

  • Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology,31, 373–385

    Article  PubMed  Google Scholar 

  • Fuster, J. M., & Alexander, G. E. (1973). Firing changes in cells of the nucleus medialis dorsalis associated with delayed response behavior. Brain Research,61, 79–91

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Lurito, J. T., Petrides, M., Schwartz, A. B., & Massey, J. T. (1989). Mental rotation of the neuronal population vector. Science,243, 234–236

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science,233, 1416–1419

    Article  PubMed  CAS  Google Scholar 

  • Gerstein, G. L., Bedenbaugh, P., & Aertsen, M. H. (1989). Neuronal assemblies. IEEE Transactions on Biomedical Engineering,36, 4–14

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron,14, 477–485

    Article  PubMed  CAS  Google Scholar 

  • Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological dissociation between perceiving objects and grasping them. Nature,349, 154–156

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. M., Lee, J. H., Flament, D., Ugurbil, K., & Ebner, T. J. (1998). Functional magnetic resonance imaging of motor, sensory, and posterior parietal cortical areas during performance of sequential typing movements. Experimental Brain Research,121, 153–166

    Article  CAS  Google Scholar 

  • Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory,70, 119–136

    Article  PubMed  CAS  Google Scholar 

  • Graziano, M. S. A., Taylor, C. S. R., & Moore, T. (2002). Complex movements evoked by micro-stimulation of precentral cortex. Neuron,34, 841–851

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, N. (1977). An Ethogram of the Blue Spiny Lizard, Sceloporus cyanogenys (Reptilia,Lacertilia, Iguanidae). Journal of Herpetology,11, 177–195

    Article  Google Scholar 

  • Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy,26, 317–330

    Article  PubMed  Google Scholar 

  • Hahnloser, R. H. R., Douglas, R. J., & Hepp, K. (2002). Attentional recruitment of inter-areal recurrent networks for selective gain control. Neural Computation,14, 1669–1689

    Article  PubMed  Google Scholar 

  • Hahnloser, R., Douglas, R. J., Mahowald, M., & Hepp, K. (1999). Feedback interactions between neuronal pointers and maps for attentional processing. Nature Neuroscience,2, 746–752

    Article  PubMed  CAS  Google Scholar 

  • Haider, B., Duque, A., Hasenstaub, A. R., & McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience,26, 4535–4545

    Article  PubMed  CAS  Google Scholar 

  • Harrington, D. L., Rao, S. M., Haaland, K. Y., Bobholz, J. A., Mayer, A. R., Binderx, J. R., & Cox, R. W. (2000). Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience,12, 56–77

    Article  PubMed  CAS  Google Scholar 

  • Harris, K. D. (2005). Neural signatures of cell assembly organization. Nature Reviews Neuroscience,6, 399–407

    Article  PubMed  CAS  Google Scholar 

  • Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., & McCormick, D. A. (2005). Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron,47, 423–435

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. (1949). The organization of behavior. New York: Wiley

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America,79, 2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hopfield, J. J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the United States of America,81, 3088–3092

    Article  PubMed  CAS  Google Scholar 

  • Jackson, A., Gee, V. J., Baker, S. N., & Lemon, R. N. (2003). Synchrony between neurons with similar muscle fields in monkey motor cortex. Neuron,38, 115–125

    Article  PubMed  CAS  Google Scholar 

  • Jog, M. S., Kubota, Y., Connolly, C. I., Hillegaart, V., & Graybiel, A. M. (1999). Building neural representations of habits. Science,286, 1745–1749

    Article  PubMed  CAS  Google Scholar 

  • Kasanetz, F., Riquelme, L. A., O'Donnell, P., & Murer, M. G. (2006). Turning off cortical ensembles stops striatal Up states and elicits phase perturbations in cortical and striatal slow oscillations in rat in vivo. Journal of Physiology,577, 97–113

    Article  PubMed  CAS  Google Scholar 

  • Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex,15, 1089–1102

    Article  PubMed  Google Scholar 

  • Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature,425, 954–956

    Article  PubMed  CAS  Google Scholar 

  • Kim, J. N., & Shadlen, M. N. (1999). Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience,2, 176–185

    Article  PubMed  Google Scholar 

  • Koulakov, A. A., Raghavachari, S., Kepecs, A., & Lisman, J. E. (2002). Model for a robust neural integrator. Nature Neuroscience,5, 775–782

    Article  PubMed  CAS  Google Scholar 

  • Kübler, A., Dixon, V., & Garavan, H. (2006). Automaticity and reestablishment of executive control-an fMRI study. Journal of Cognitive Neuroscience,18, 1331–1342

    Article  PubMed  Google Scholar 

  • Lasner, A., & Fransén, E. (1992). Modelling Hebbian cell assemblies comprised of cortical neurons. Network,3, 105–119

    Google Scholar 

  • Lehéricy, S., Benali, H., Van de Moortele, P., Pélégrini-Issac, M., Waechter, T., Ugurbil, K., & Doyon, J. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National of Academy of Sciences of the United States of America,102, 12566–12571

    Article  CAS  Google Scholar 

  • Liu, G. (2004). Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nature Neuroscience,7, 373–379

    Article  PubMed  CAS  Google Scholar 

  • Lorente de Nó, R. (1938). Analysis of the activity of the chains of internuncial neurons. Journal of Neurophysiology,1, 207–244

    Google Scholar 

  • Lu, X., & Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron,45, 967–973

    Article  PubMed  CAS  Google Scholar 

  • Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience,5, 793–807

    Article  PubMed  CAS  Google Scholar 

  • Maynard, E. M., Hatsopoulos, N. G., Ojakangas, C. L., Acuna, B. D., Sanes, J. N., Normann, R. A., & Donoghue, J. P. (1999). Neuronal interactions improve cortical population coding of movement direction. Journal of Neuroscience,19, 8083–8093

    PubMed  CAS  Google Scholar 

  • Mazor, O., & Laurent, G. (2005). Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron,48, 661–673

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience,24, 167–202

    Article  PubMed  CAS  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2006). The visual brain in action. Oxford: Oxford University Press

    Google Scholar 

  • Mink, J. W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology,50, 381–425

    Article  PubMed  CAS  Google Scholar 

  • Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature,331, 68–70

    Article  PubMed  CAS  Google Scholar 

  • Morelli, L. G., Cerdeira, H. A., & Zanette, D. H. (2005). Frequency clustering of coupled phase oscillators on small-world networks. The European Physical Journal B — Condensed Matter and Complex Systems, 43, 243–250

    Article  CAS  Google Scholar 

  • Moyer, J. T., Wolf, J. A., & Finkel, L. H. (2007). Effects of dopaminergic modulation on the inte-grative properties of the ventral striatal medium spiny neuron. Journal of Neurophysiology,98, 3731–3748

    Article  PubMed  CAS  Google Scholar 

  • Murthy, V. N., & Fetz, E. E. (1996). Oscillatory activity in sensorimotor cortex of awake monkeys: Synchronization of local field potentials and relation to behavior. Journal of Neurophysiology, 76, 3949–3967

    PubMed  CAS  Google Scholar 

  • Nambu, A. (2005). A new approach to understand the pathophysiology of Parkinson's disease. Journal of Neurology,252(Suppl 4), IV1–IV4

    Article  PubMed  CAS  Google Scholar 

  • Norman, D. A., & Shallice, T. (2000). Attention to action: Willed and automatic control of behavior. In M. S. Gazzaniga (Ed.), Cognitive neuroscience: A reader. Blackwell Publishing. 376–390

    Google Scholar 

  • O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron,38, 329–337

    Article  PubMed  Google Scholar 

  • O'Donnell, P. (2003). Dopamine gating of forebrain neural ensembles. European Journal of Neuroscience,17, 429–435

    Article  PubMed  Google Scholar 

  • Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the Basal Ganglia. Annual Review of Neuroscience,25, 563–593

    Article  PubMed  CAS  Google Scholar 

  • Pawlak, V., & Kerr, J. N. D. (2008). Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity. Journal of Neuroscience,28, 2435–2446

    Article  PubMed  CAS  Google Scholar 

  • Person, A. L., & Perkel, D. J. (2005). Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron,46, 129–140

    Article  PubMed  CAS  Google Scholar 

  • Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science,293,1159–1163

    Article  PubMed  CAS  Google Scholar 

  • Rabinovich, M. I., Huerta, R., Varona, P., & Afraimovich, V. S. (2006). Generation and reshaping of sequences in neural systems. Biological Cybernetics,95, 519–536

    Article  PubMed  Google Scholar 

  • Reason, J. (1984). Lapses of attention in everyday life. In W. Parasuraman & R. Davies (Eds.), Varieties of attention. Orlando FL: Academic.515–549

    Google Scholar 

  • Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research,71, 491–507

    Article  CAS  Google Scholar 

  • Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature,399, 470–473

    Article  PubMed  CAS  Google Scholar 

  • Sakai, K., Hikosaka, O., Miyauchi, S., Takino, R., Sasaki, Y., & Pütz, B. (1998). Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. Journal of Neuroscience,18, 1827–1840

    PubMed  CAS  Google Scholar 

  • Sakai, K., Kitaguchi, K., & Hikosaka, O. (2003). Chunking during human visuomotor sequence learning. Experimental Brain Research,152, 229–242

    Article  Google Scholar 

  • Sanes, J. N., & Donoghue, J. P. (1993). Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proceedings of the National Academy of Sciences of the United Sstates of America,90, 4470–4474

    Article  CAS  Google Scholar 

  • Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review in Neuroscience,23, 393–415

    Article  CAS  Google Scholar 

  • Sasaki, T., Matsuki, N., & Ikegaya, Y. (2007). Metastability of active CA3 networks. Journal of Neuroscience,27, 517–528

    Article  PubMed  CAS  Google Scholar 

  • Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review in Psychology,57, 87–115

    Article  Google Scholar 

  • Schultz, W., & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review in Neuroscience,23, 473–500

    Article  CAS  Google Scholar 

  • Schultz, W., Tremblay, L., & Hollerman, J. R. (2000). Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex,10, 272–284

    Article  PubMed  CAS  Google Scholar 

  • Sesack, S. R., Hawrylak, V. A., Melchitzky, D. S., & Lewis, D. A. (1998). Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: Ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cerebral Cortex, 8, 614–622

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science,277, 821–825

    Article  PubMed  CAS  Google Scholar 

  • Shadmehr, R., & Holcomb, H. H. (1999). Inhibitory control of competing motor memories. Experimental Brain Research,126, 235–251

    Article  CAS  Google Scholar 

  • Shu, Y., Hasenstaub, A., & McCormick, D. A. (2003). Turning on and off recurrent balanced cortical activity. Nature,423, 288–293

    Article  PubMed  CAS  Google Scholar 

  • Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics,2, 145–162

    Article  PubMed  Google Scholar 

  • Stringer, S. M., Rolls, E. T., Trappenberg, T. P., & de Araujo, I. E. T. (2002). Self-organizing continuous attractor networks and path integration: Two-dimensional models of place cells. Network,13, 429–446

    PubMed  CAS  Google Scholar 

  • Tanji, J., & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature,371, 413–416

    Article  PubMed  CAS  Google Scholar 

  • Tononi, G., McIntosh, A. R., Russell, D. P., & Edelman, G. M. (1998). Functional clustering: Identifying strongly interactive brain regions in neuroimaging data. Neuroimage,7, 133–149

    Article  PubMed  CAS  Google Scholar 

  • Tsodyks, M. V., & Sejnowski, T. (1995). Rapid state switching in balanced neocortical models. Network,6, 111–124

    Article  Google Scholar 

  • Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373, 515–518

    Article  PubMed  CAS  Google Scholar 

  • Varela, F. J. (1995). Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biological Research,28, 81–95

    PubMed  CAS  Google Scholar 

  • Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239

    Article  PubMed  CAS  Google Scholar 

  • Verwey, W. B. (1994). Evidence for the development of concurrent processing in a sequential keypressing task. Acta Psychologica (Amst),85, 245–262

    Article  Google Scholar 

  • Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neuroscience,24, 455–463

    Article  CAS  Google Scholar 

  • Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature,426, 442–446

    Article  PubMed  CAS  Google Scholar 

  • Whittington, M. A., Traub, R. D., & Jefferys, J. G. (1995). Synchronized oscillations in interneu-ron networks driven by metabotropic glutamate receptor activation. Nature, 373, 612–615

    Article  PubMed  CAS  Google Scholar 

  • Wilent, W. B., & Contreras, D. (2005). Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nature Neuroscience,8, 1364–1370

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. M., & Goldman-Rakic, P. S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8, 321–345

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. (1998). Basal Ganglia. In G. Shepherd (Ed.), The synaptic organization of the brain(pp 329–375). New York: Oxford University Press

    Google Scholar 

  • Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261, 1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). Cholinergic switching within neocortical inhibitory networks. Science,281, 985–988

    Article  PubMed  CAS  Google Scholar 

  • Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. European Journal of Neuroscience,19, 181–189

    Article  PubMed  Google Scholar 

  • Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. European Journal of Neuroscience,22, 513–523

    Article  PubMed  Google Scholar 

  • Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Biological Science,252, 13–18

    Article  CAS  Google Scholar 

  • Zhou, C., & Kurths, J. (2006). Hierarchical synchronization in complex networks with heterogeneous degrees. Chaos,16, 015104

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Hurtado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hurtado, J.M. (2009). From Goals to Habits – A View from the Network. In: Aboitiz, F., Cosmelli, D. (eds) From Attention to Goal-Directed Behavior. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70573-4_9

Download citation

Publish with us

Policies and ethics