Attention and Neurodynamical Correlates of Natural Vision

  • P. E. Maldonado
  • J. P. Ossandón
  • F. J. Flores

In the last decade, several lines of evidence have demonstrated that most sensory systems and particularly the visual system are intensely subject to dynami¬cal top-down influences that depend on the current behavior of the organism. During natural vision, eye movements and neuronal activity in many visual areas are dependent on attention and goal-directed actions of the organism. Yet, current models of visual perception are mainly based on studies that have examined neuro-nal activity using very simple stimuli, or restrictive behavioral conditions. Moreover, current receptive field models based on these studies appear to fail when they are tested during experiments that used natural stimuli or complex visual behavior. In this chapter, we discuss new evidence showing that the classical receptive field is an incomplete description of the response of neurons in the visual system, largely because we have overlooked top-down influences in neuronal activity and behavior. We argue that the use of natural stimuli and natural behaviors such as free viewing, by including attention and other top-down mechanisms, can provide new insights into the neurodynamical correlates of visual perception.


Visual System Receptive Field Visual Perception Natural Image Lateral Geniculate Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aminoff, E., Gronau, N., & Bar, M. (2007b). The parahippocampal cortex mediates spatial and nonspatial associations.CerebralCortex, 17, 1493–1503Google Scholar
  2. Awh, E., Armstrong, K. M., & Moore, T. (2006). Visual and oculomotor selection: Links, causes and implications for spatial attention.Trends in Cognitive Science, 10, 124–130CrossRefGoogle Scholar
  3. Bar, M. (2004). Visual objects in context.Nature Reviews Neuroscience 5617–629PubMedCrossRefGoogle Scholar
  4. Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M. et al. (2006). Top-down facilitation of visual recognition.Proceedings of the National Academy of Sciences of the United States of America, 103, 449–454PubMedCrossRefGoogle Scholar
  5. Barlow, H. B. (1961). Possible principles underlying the transformations of sensory images. In W. A. Rosenblith (Ed.)Sensory communication(pp. 217–234). Cambridge, MA: MITGoogle Scholar
  6. Beck, D. M., Rees, G., Frith, C. D., & Lavie, N. (2001). Neural correlates of change detection and change blindness.Nature Neuroscience, 4, 645–650PubMedCrossRefGoogle Scholar
  7. Bringuier, V., Chavane, F., Glaeser, L., & Fregnac, Y. (1999). Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons.Science, 283, 695–699PubMedCrossRefGoogle Scholar
  8. Carello, C. D. & Krauzlis, R. J. (2004). Manipulating intent: Evidence for a causal role of the superior colliculus in target selection.Neuron, 43, 575–583PubMedCrossRefGoogle Scholar
  9. Chen, C. M., Lakatos, P., Shah, A. S., Mehta, A. D., Givre, S. J., Javitt, D. C. et al. (2007). Functional anatomy and interaction of fast and slow visual pathways in macaque monkeys.Cerebral Cortex, 17, 1561–1569PubMedCrossRefGoogle Scholar
  10. Cohen, J. (2002). The grand grand illusion illusion.Journal of Consciousness Studies, 9, 141–157Google Scholar
  11. Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and the eye to visual locations: Identical, independent, or overlapping neural systems?Proceedings of the National Academy of Sciences of the United States of America, 95, 831–838PubMedCrossRefGoogle Scholar
  12. Corbetta, M. & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain.Nature Review Neuroscience, 3, 201–215CrossRefGoogle Scholar
  13. Dan, Y., Atick, J. J., & Reid, R. C. (1996). Efficient coding of natural scenes in the lateral genicu-late nucleus: Experimental test of a computational theory.Journal of Neuroscience 16, 3351–3362PubMedGoogle Scholar
  14. David, S. V., Vinje, W. E., & Gallant, J. L. (2004). Natural stimulus statistics alter the receptive field structure of v1 neurons.Journal of Neuroscience, 24, 6991–7006PubMedCrossRefGoogle Scholar
  15. Epstein, R., Graham, K. S., & Downing, P. E. (2003). Viewpoint-specific scene representations in human parahippocampal cortex.Neuron, 37, 865–876PubMedCrossRefGoogle Scholar
  16. Epstein, R., Harris, A., Stanley, D., & Kanwisher, N. (1999). The parahippocampal place area: Recognition, navigation, or encoding?Neuron, 23, 115–125PubMedCrossRefGoogle Scholar
  17. Epstein, R. & Kanwisher, N. (1998). A cortical representation of the local visual environment.Nature, 392, 598–601PubMedCrossRefGoogle Scholar
  18. Felsen, G. & Dan, Y. (2005). A natural approach to studying vision.Nature Neuroscience 8, 1643–1646PubMedCrossRefGoogle Scholar
  19. Felsen, G., Touryan, J., & Dan, Y. (2005). Contextual modulation of orientation tuning contributes to efficient processing of natural stimuli.Network, 16, 139–149PubMedCrossRefGoogle Scholar
  20. Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells.Journal of the Optical Society of America A, 4, 2379–2394CrossRefGoogle Scholar
  21. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention.Science, 291, 1560–1563PubMedCrossRefGoogle Scholar
  22. Gilbert, C., Ito, M., Kapadia, M., & Westheimer, G. (2000). Interactions between attention, context and learning in primary visual cortex.Vision Research 40, 1217–1226PubMedCrossRefGoogle Scholar
  23. Hayhoe, M. & Ballard, D. (2005). Eye movements in natural behavior.Trends in Cognitive Science, 9, 188–194CrossRefGoogle Scholar
  24. Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B. (2003). Visual memory and motor planning in a natural task.Journal of Vision, 3, 49–63PubMedCrossRefGoogle Scholar
  25. Hendry, S. H. & Reid, R. C. (2000). The koniocellular pathway in primate vision.Annual Review in Neuroscience, 23, 127–153CrossRefGoogle Scholar
  26. Huettel, S. A., Guzeldere, G., & McCarthy, G. (2001). Dissociating the neural mechanisms of visual attention in change detection using functional MRI.Journal of Cognitive Neuroscience 13, 1006–1018PubMedCrossRefGoogle Scholar
  27. Jones, H. E., Grieve, K. L., Wang, W., & Sillito, A. M. (2001). Surround suppression in primate V1.Journal of Neurophysiology, 86, 2011–2028PubMedGoogle Scholar
  28. Kastner, S. & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex.Annual Review in Neuroscience, 23, 315–341PubMedGoogle Scholar
  29. Kersten, D. (1987). Predictability and redundancy of natural images.Journal of Optical Society of America A, 4, 2395–2400CrossRefGoogle Scholar
  30. Land, M. F. & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities?Vision Research, 41, 3559–3565PubMedCrossRefGoogle Scholar
  31. Land, M. F. & McLeod, P. (2000). From eye movements to actions: How batsmen hit the ball.Nature Neuroscience, 3, 1340–1345PubMedCrossRefGoogle Scholar
  32. Levin, D. T. & Simons, D. J. (1997). Failure to detect changes to attended objects in motion pictures.Psychonomic Bulletin and Review, 4, 501–506Google Scholar
  33. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.Journal of Neurophysiology 77, 24–42PubMedGoogle Scholar
  34. Marcelja, S. (1980). Mathematical description of the responses of simple cortical cells.Journal of Optical Society of America 70, 1297–1300CrossRefGoogle Scholar
  35. Moore, T. & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex.Nature, 421, 370–373PubMedCrossRefGoogle Scholar
  36. Moore, T. & Fallah, M. (2001). Control of eye movements and spatial attention. Proceedings of the National Academy of Sciences of the United States of America,98, 1273–1276PubMedCrossRefGoogle Scholar
  37. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiol, 70, 909–919Google Scholar
  38. Motter, B. C. (1994). Neural correlates of attentive selection for color or luminance in extrastriate area V4. Journal of Neuroscience,14, 2178–2189PubMedGoogle Scholar
  39. Motter, B. C. (1998). Inside and outside the focus of attention. Neuron,21, 951–953PubMedCrossRefGoogle Scholar
  40. Motter, B. C. & Belky, E. J. (1998). The guidance of eye movements during active visual search. Vision Research,38, 1805–1815PubMedCrossRefGoogle Scholar
  41. Noe, A. (2002). Is the visual world a grand illusion? Journal of Consciousness Studies,9, 1–12Google Scholar
  42. O'Regan, J. K., Deubel, H., Clark, J. J., & Rensink, R. A. (2000). Picture changes during blinks: Looking without seeing and seeing without looking. Visual Cognition,7, 191–211CrossRefGoogle Scholar
  43. Oliva, A. & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information diagnos-ticity changes the perception of complex visual stimuli. Cognitive Psychology,34, 72–107PubMedCrossRefGoogle Scholar
  44. Oliva, A. & Schyns, P. G. (2000). Diagnostic colors mediate scene recognition. Cognitive Psychology,41, 176–210PubMedCrossRefGoogle Scholar
  45. Olshausen, B. A. & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609PubMedCrossRefGoogle Scholar
  46. Olshausen, B. A. & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research,37, 3311–3325PubMedCrossRefGoogle Scholar
  47. Olshausen, B. A. & Field, D. J. (2004). Sparse coding of sensory inputs. Current Opinion in Neurobiology,14, 481–487PubMedCrossRefGoogle Scholar
  48. Olshausen, B. A. & Field, D. J. (2005). How close are we to understanding v1? Neural Computation,17, 1665–1699PubMedCrossRefGoogle Scholar
  49. Parraga, C. A., Troscianko, T., & Tolhurst, D. J. (2000). The human visual system is optimised for processing the spatial information in natural visual images. Current Biology,10, 35–38PubMedCrossRefGoogle Scholar
  50. Pelz, J. B. & Canosa, R. (2001). Oculomotor behavior and perceptual strategies in complex tasks. Vision Research, 41, 3587–3596PubMedCrossRefGoogle Scholar
  51. Pessoa, L. & Ungerleider, L. G. (2004). Neural correlates of change detection and change blindness in a working memory task. Cerebral Cortex,14, 511–520PubMedCrossRefGoogle Scholar
  52. Pierrot-Deseilligny, C., Milea, D., & Muri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17, 17–25PubMedCrossRefGoogle Scholar
  53. Rousselet, G. A., Joubert, O. R., & Fabre-Thorpe, M. (2005). How long to get to the “gist” of real-world natural scenes? Visual Cognition,12, 852–877CrossRefGoogle Scholar
  54. Rust, N. C. & Movshon, J. A. (2005). In praise of artifice. Nature Neuroscience, 8, 1647–1650PubMedCrossRefGoogle Scholar
  55. Shulman, G. L., McAvoy, M. P., Cowan, M. C., Astafiev, S. V., Tansy, A. P., d'Avossa, G. et al. (2003). Quantitative analysis of attention and detection signals during visual search. Journal of Neurophysiology,90, 3384–3397PubMedCrossRefGoogle Scholar
  56. Simons, D. J. & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Perception, 28, 1059–1074PubMedCrossRefGoogle Scholar
  57. Simons, D. J. & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin and Review,5, 644–649Google Scholar
  58. Simons, D. J. & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Science, 9, 16–20CrossRefGoogle Scholar
  59. Smyth, D., Willmore, B., Baker, G. E., Thompson, I. D., & Tolhurst, D. J. (2003). The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal of Neuroscience, 23, 4746–4759PubMedGoogle Scholar
  60. Srinivasan, M. V., Laughlin, S. B., & Dubs, A. (1982). Predictive coding: A fresh view of inhibition in the retina. Proceedings of Royal Society of London – Series B: Biological Science, 216, 427–459CrossRefGoogle Scholar
  61. Tehovnik, E. J., Sommer, M. A., Chou, I. H., Slocum, W. M., & Schiller, P. H. (2000). Eye fields in the frontal lobes of primates. Brain Research Brain Research Review,32, 413–448CrossRefGoogle Scholar
  62. Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., & Gallant, J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli. Network,12, 289–316PubMedGoogle Scholar
  63. Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature,381, 520–522PubMedCrossRefGoogle Scholar
  64. Tolhurst, D. J., Tadmor, Y., & Chao, T. (1992). Amplitude Spectra of Natural Images. Ophthalmic and Physiological Optics,12, 229–232PubMedCrossRefGoogle Scholar
  65. Triesch, J., Ballard, D. H., Hayhoe, M. M., & Sullivan, B. T. (2003). What you see is what you need. Journal of Vision,3, 86–94PubMedCrossRefGoogle Scholar
  66. Trotter, Y. & Celebrini, S. (1999). Gaze direction controls response gain in primary visual-cortex neurons. Nature,398, 239–242PubMedCrossRefGoogle Scholar
  67. Turano, K. A., Geruschat, D. R., & Baker, F. H. (2003). Oculomotor strategies for the direction of gaze tested with a real-world activity. Vision Research, 43, 333–346PubMedCrossRefGoogle Scholar
  68. Ungerleider, L. G. & Haxby, J. V. (1994). ‘What’ and ‘Where’ in the human brain. Current Opinion in. Neurobiology,4, 157–165PubMedCrossRefGoogle Scholar
  69. Vinje, W. E. & Gallant, J. L. (2000). Sparse coding and decorrelation in primary visual cortex during natural vision. Science,287, 1273–1276PubMedCrossRefGoogle Scholar
  70. Weliky, M., Fiser, J., Hunt, R. H., & Wagner, D. N. (2003). Coding of natural scenes in primary visual cortex. Neuron, 37, 703–718PubMedCrossRefGoogle Scholar
  71. Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature,439, 733–736PubMedCrossRefGoogle Scholar
  72. Worgotter, F., Suder, K., Zhao, Y., Kerscher, N., Eysel, U. T., & Funke, K. (1998). State-dependent receptive-field restructuring in the visual cortex. Nature,396, 165–168PubMedCrossRefGoogle Scholar
  73. Yarbus, A. L. (1967). Eye movements and vision. New York: PlenumGoogle Scholar
  74. Yen, S. C., Baker, J., & Gray, C. M. (2007). Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. Journal of Neurophysiology,97, 1326–1341PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. E. Maldonado
    • 1
  • J. P. Ossandón
    • 1
  • F. J. Flores
    • 1
  1. 1.Programa de Fisiologia y Biofisica, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileCasillaChile

Personalised recommendations