Intracortical Recordings During Attentional Tasks

In the last 10 years, a new field has emerged investigating in humans the functional role of high-frequency neural activity (so-called gamma-band activity, above 40 Hz) with intracerebral electroencephalography (ICE). Although restricted to patients, most of them suffering from intractable epilepsy, ICE has a combined spatiotemporal resolution unmatched by any other human brain imaging technique. In this chapter, we review the contribution of this field to the neuroscience of atten¬tion, with particular emphasis on studies investigating attentional modulation of high-level cognitive processes such as visual perception, memory, or language. Attention is shown to amplify gamma-band synchronization and desynchronization processes associated with cognition, both in early sensory areas and in temporal, parietal, and frontal associative areas. We argue that this effect of attention on gamma-band activity provides a sound basis for the development of quantitative indices of attention, and efficient attention-training systems based on noninvasive brain measures.



Dynamical spectral imaging




Functional magnetic resonance imaging


Intracerebral electroencephalography




Positron emission tomography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D. (1941). Afferent discharges to the cerebral cortex from peripheral sense organs. Journal of Physiology,100(2), 159–191PubMedGoogle Scholar
  2. Aoki, F., Fetz, E. E., Shupe, L., Lettich, E., & Ojemann, G. A. (1999). Increased gamma-range activity in human sensorimotor cortex during performance of visuomotor tasks. Clinical Neurophysiology,110(3), 524–537PubMedCrossRefGoogle Scholar
  3. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience,4(10), 829–839PubMedCrossRefGoogle Scholar
  4. Bauer, R. H., & Jones, C. N. (1976). Feedback training of 36–44 HZ EEG activity in the visual cortex and hippocampus of cats: Evidence for sensory and motor involvement. Physiology Behaviour,17(6), 885–890CrossRefGoogle Scholar
  5. Berger, H. (1929). Uber das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten,(87), 527–570CrossRefGoogle Scholar
  6. Bichot, N. P., & Desimone, R. (2006). Finding a face in the crowd: Parallel and serial neural mechanisms of visual selection. Progress Brain Research,155,147–156CrossRefGoogle Scholar
  7. Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science,308(5721), 529–534PubMedCrossRefGoogle Scholar
  8. Bouyer, J. J., Montaron, M. F., & Rougeul, A. (1981). Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: Cortical and thalamic localizations. Electroencephalography and Clinical Neurophysiology,51(3), 244–252PubMedCrossRefGoogle Scholar
  9. Brovelli, A., Lachaux, J. P., Kahane, P., & Boussaoud, D. (2005). High gamma frequency oscillatory activity dissociates attention from intention in the human premotor cortex. Neuroimage, 28(1), 154–164PubMedCrossRefGoogle Scholar
  10. Caplan, J. B., Madsen, J. R., Raghavachari, S., & Kahana, M. J. (2001). Distinct patterns of brain oscillations underlie two basic parameters of human maze learning. Journal of Neurophysiology, 86(1), 368–380PubMedGoogle Scholar
  11. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience,3(3), 201–215PubMedCrossRefGoogle Scholar
  12. Crone, N. E., Boatman, D., Gordon, B., & Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clinical Neurophysiology,112(4), 565–582PubMedCrossRefGoogle Scholar
  13. Crone, N. E., Hao, L., Hart, J., Jr., Boatman, D., Lesser, R. P., Irizarry, R., et al. (2001). Electrocor-ticographic gamma activity during word production in spoken and sign language. Neurology, 57(11), 2045–2053PubMedGoogle Scholar
  14. Crone, N. E., Miglioretti, D. L., Gordon, B., & Lesser, R. P. (1998). Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain,121(Pt 12), 2301–2315PubMedCrossRefGoogle Scholar
  15. Engel, A. K., Roelfsema, P. R., Fries, P., Brecht, M., & Singer, W. (1997). Role of the temporal domain for response selection and perceptual binding. Cerebral Cortex,7(6), 571–582PubMedCrossRefGoogle Scholar
  16. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. Neuroimage,26(2), 471–479PubMedCrossRefGoogle Scholar
  17. Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Science,9(10), 474–480CrossRefGoogle Scholar
  18. Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science,291(5508), 1560–1563PubMedCrossRefGoogle Scholar
  19. Fries, P., Roelfsema, P. R., Engel, A. K., Konig, P., & Singer, W. (1997). Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proceedings of the National Academy of Sciences of the United States of America,94(23), 12699–12704PubMedCrossRefGoogle Scholar
  20. Gray, C. M., Konig, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual-cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338(6213), 334–337PubMedCrossRefGoogle Scholar
  21. Gray, C. M., & Singer, W. (1989). Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America,86(5), 1698–1702PubMedCrossRefGoogle Scholar
  22. Gruber, T., Muller, M. M., Keil, A., & Elbert, T. (1999). Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110(12), 2074–2085PubMedCrossRefGoogle Scholar
  23. Herculano-Houzel, S., Munk, M. H., Neuenschwander, S., & Singer, W. (1999). Precisely synchronized oscillatory firing patterns require electroencephalographic activation. Journal of Neuroscience,19(10), 3992–4010PubMedGoogle Scholar
  24. Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neuroscience,30(7), 317–324CrossRefGoogle Scholar
  25. Jokisch, D., & Jensen, O. (2007). Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. Journal of Neuroscience,27(12), 3244–3251PubMedCrossRefGoogle Scholar
  26. Jung, J., Hudry, J., Ryvlin, P., Royet, J. P., Bertrand, O., & Lachaux, J. P. (2006). Functional significance of olfactory-induced oscillations in the human amygdala. Cerebral Cortex,16(1), 1–8PubMedCrossRefGoogle Scholar
  27. Jung, J., Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., et al. (2007). The neural basis of attentive reading. Human Brain Mapping, doi: 10.1002/hbm.20454Google Scholar
  28. Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11(6), 739–744PubMedCrossRefGoogle Scholar
  29. Kanwisher, N., & Wojciulik, E. (2000). Visual attention: Insights from brain imaging. Nature Reviews Neuroscience,1(2), 91–100PubMedCrossRefGoogle Scholar
  30. Konig, P., Engel, A. K., & Singer, W. (1995). Relation between Oscillatory Activity and Long-Range Synchronization in Cat Visual-Cortex. Proceedings of the National Academy of Sciences of the United States of America, 92(1), 290–294PubMedCrossRefGoogle Scholar
  31. Lachaux, J. P., Fonlupt, P., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., et al. (2007). Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Human Brain Mapping,28(12), 1368–1375PubMedCrossRefGoogle Scholar
  32. Lachaux, J. P., George, N., Tallon-Baudry, C., Martinerie, J., Hugueville, L., Minotti, L., et al. (2005). The many faces of the gamma band response to complex visual stimuli. Neuroimage, 25(2), 491–501PubMedCrossRefGoogle Scholar
  33. Lachaux, J. P., Hoffmann, D., Minotti, L., Berthoz, A., & Kahane, P. (2006). Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field. Neuroimage,30(4), 1302–1312PubMedCrossRefGoogle Scholar
  34. Lachaux, J. P., Jerbi, K., Bertrand, O., Minotti, L., Hoffmann, D., Schoendorff, B., et al. (2007). A blueprint for real-time functional mapping via human intracranial recordings. PLoS ONE, 2(10), e1094PubMedCrossRefGoogle Scholar
  35. Lachaux, J. P., Jung, J., Mainy, N., Dreher, J. C., Bertrand, O., Baciu, M., et al. (2008). Silence is golden: Transient neural deactivation in the prefrontal cortex during attentive reading. Cerebral Cortex,18(2), 443–450PubMedCrossRefGoogle Scholar
  36. Lachaux, J. P., Rodriguez, E., Martinerie, J., Adam, C., Hasboun, D., & Varela, F. J. (2000). A quantitative study of gamma-band activity in human intracranial recordings triggered by visual stimuli. European Journal of Neuroscience,12(7), 2608–2622PubMedCrossRefGoogle Scholar
  37. Lachaux, J. P., Rudrauf, D., & Kahane, P. (2003). Intracranial EEG and human brain mapping. Journal of Physiology (Paris),97(4–6), 613–628CrossRefGoogle Scholar
  38. Mainy, N., Jung, J., Baciu, M., Kahane, P., Schoendorff, B., Minotti, L., et al. (2007). Cortical dynamics of word recognition. Human Brain Mapping, doi: 10.1002/hbm.20457Google Scholar
  39. Mainy, N., Kahane, P., Minotti, L., Hoffmann, D., Bertrand, O., & Lachaux, J. P. (2007). Neural correlates of consolidation in working memory. Human Brain Mapping,28(3), 183–193PubMedCrossRefGoogle Scholar
  40. Mangun, G. R., Buonocore, M. H., Girelli, M., & Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Human Brain Mapping,6(5–6), 383–389PubMedCrossRefGoogle Scholar
  41. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science,229(4715), 782–784PubMedCrossRefGoogle Scholar
  42. Muller, M. M., Gruber, T., & Keil, A. (2000). Modulation of induced gamma band activity in the human EEG by attention and visual information processing. International Journal of Psychophysiology,38(3), 283–299PubMedCrossRefGoogle Scholar
  43. Ossandon, T., Kahane, P., & Lachaux, J. P. (2008). Gamma-band activity during visual search in humans. in preparation Google Scholar
  44. Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy,197(Pt 3), 335–359PubMedCrossRefGoogle Scholar
  45. Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience,27, 611–647PubMedCrossRefGoogle Scholar
  46. Rodriguez, E., George, N., Lachaux, J. P., Martinerie, J., Renault, B., & Varela, F. J. (1999). Perception' shadow: Long-distance synchronization of human brain activity. Nature, 397(6718), 430–433PubMedCrossRefGoogle Scholar
  47. Roskies, A. L. (1999). The binding problem. Neuron,24(1), 7–9, 111–125PubMedCrossRefGoogle Scholar
  48. Sederberg, P. B., Kahana, M. J., Howard, M. W., Donner, E. J., & Madsen, J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. Journal of Neuroscience, 23(34), 10809–10814PubMedGoogle Scholar
  49. Sederberg, P. B., Schulze-Bonhage, A., Madsen, J. R., Bromfield, E. B., McCarthy, D. C., Brandt, A., et al. (2007). Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cerebral Cortex,17(5), 1190–1196PubMedCrossRefGoogle Scholar
  50. Sereno, M. I. (1998). Brain mapping in animals and humans. Current Opinion in Neurobiology, 8(2), 188–194PubMedCrossRefGoogle Scholar
  51. Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49–65, 111–125PubMedCrossRefGoogle Scholar
  52. Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K. O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404(6774), 187–190PubMedCrossRefGoogle Scholar
  53. Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Science,3(4), 151–162CrossRefGoogle Scholar
  54. Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Permier, J. (1997). Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. Journal of Neuroscience,17(2), 722–734PubMedGoogle Scholar
  55. Tallon-Baudry, C., Bertrand, O., & Fischer, C. (2001). Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. Journal of Neuroscience, 21(20), RC177PubMedGoogle Scholar
  56. Tallon-Baudry, C., Bertrand, O., Henaff, M. A., Isnard, J., & Fischer, C. (2005). Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cerebral Cortex,15(5), 654–662PubMedCrossRefGoogle Scholar
  57. Taylor, K., Mandon, S., Freiwald, W. A., & Kreiter, A. K. (2005). Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cerebral Cortex,15(9), 1424–1437PubMedCrossRefGoogle Scholar
  58. Treisman, A. (1982). Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance,8(2), 194–214PubMedCrossRefGoogle Scholar
  59. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology,6(2), 171–178PubMedCrossRefGoogle Scholar
  60. Treisman, A. (1998). Feature binding, attention and object perception. Philosophical Transactions of the Royal Society of London — Series B: Biological Science,353(1373), 1295–1306CrossRefGoogle Scholar
  61. Varela, F., Lachaux, J. P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience,2(4), 229–239PubMedCrossRefGoogle Scholar
  62. Varela, F. J. (1995). Resonant cell assemblies: A new approach to cognitive functions and neuronal synchrony. Biological Research,28(1), 81–95PubMedGoogle Scholar
  63. Womelsdorf, T., Fries, P., Mitra, P. P., & Desimone, R. (2006). Gamma-band synchronization in visual cortex predicts speed of change detection. Nature,439(7077), 733–736PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.INSERMInstitut Fédératif des Neurosciences, 69000 Lyon, France, Université Lyon 1LyonFrance
  2. 2.Programa de Fisiologia y Biofisica, Instituto de Ciencias Biomédicas, Facultad de MedicinaCentre Hospitalier Le Vinatier (Bât. 452)BronFrance
  3. 3.Programa de Fisiologia y Biofisica, Instituto de Ciencias Biomédicas, Facultad de MedicinaUniversidad de ChileCasillaChile

Personalised recommendations