Skip to main content

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 614))

Abstract

The paper presents an introduction to simulation models for evolutionary systems from three different points of view. Macro evolution is discussed in view of catastrophic events, like e.g. extinction events – and it is shown that these may occur at random, without external cause. Micro evolution is demonstrated looking at an actual physical problem. It turns out that there is an important distinction between natural evolution and the usage of evolutionary models for optimization purpose. In the third section we consider bottom-up evolution, by discussing a recent model for the generation of simplified discrete models for large arrays of regulatory circuits – to the end of creating artificial life. The author takes the liberty to mention links to economical systems whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Axelrod. An evolutionary approach to norms. American Political Science Review, 80:1095-1111,1986.

    Google Scholar 

  • R. Axelrod. The Complexity of Cooperation. Princeton University Press, Princeton, NJ, 1997.

    Google Scholar 

  • J. M. Baker. Adaptive speciation: The role of natural selection in mechanisms of geographic and non-geographic speciation. Studies in History and Philosophy of Biological and Biomedical Sciences, 36:303-326, 2005.

    Article  Google Scholar 

  • R. K. Bambach, A. H. Knoll, and S. C. Wang. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30(4):522-542, 2004.

    Article  Google Scholar 

  • G. D. Doolen, U. Frisch, and S. Wolfram, editors. Lattice Gas Methods for Partial Differential Equations. Addison-Wesley, Reading, MA, 1991.

    Google Scholar 

  • B. Eichengreen and H. James. Gold Standard and the Great Depression, 1919-39. Oxford University Press, Oxford, 1996.

    Google Scholar 

  • N. Eldredge and S. J. Gould. Punctuated equilibria: an alternative to phyletic gradualism. In T.J.M. Schopf, editor, Models in paleobiology, pages 82-115. Freeman, Cooper, San Francisco, 1972.

    Google Scholar 

  • G. B. Ermentrout and L. Edelstein-Keshet. Cellular automata approach to biological modeling. Journal of Theoretical Biology, 160:97-133, 1993.

    Article  Google Scholar 

  • J. K. Galbraith. The Great Crash: 1929. Houghton Mifflin, Boston, 1997.

    Google Scholar 

  • S. J. Gould. The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, 2002.

    Google Scholar 

  • I. Hand and P. A. Henning. Gl ücksspielen an der B örse. eine verhaltenspsychologischmathematische Analyse. Sucht, 50(3):172-186, 2004.

    Google Scholar 

  • P. A. Henning. Zum Informationsbegriff der Physik. Informatik Spektrum, 27(2):202-207, 2004.

    Article  Google Scholar 

  • A. A. Julius, A. Halasz, V. Kumar, and G. J. Pappas. Finite state abstraction of a stochastic model of the lactose regulation system of escherichia coli. In Proceedings 45th IEEE Conference on Decision and Control, 2006.

    Google Scholar 

  • R. Laubenbacher and B. Stigler. A computational algebra approach to the reverse engineering of gene regulatory networks. Journal of Theoretical Biology, 229:523-537, 2004.

    Article  Google Scholar 

  • R. A. Muller and R. A. Rohde. Cycles in fossil diversity. Nature, 434:208-210, 2005.

    Article  Google Scholar 

  • J. R. Nash. Simulated evolution. an open source project. Cited April 2008, 2007. URL http://www.simulatedevolution.com.

  • I. Rechenberg. Evolution strategy to find an optimal lens shape. Cited April 2008, 2007. URL http://lautaro.fb10.tu-berlin.de/user/michael/english/lens/lens.html.

  • W. R. Rice and E. E. Hostert. Laboratory experiments on speciation: What have we learned in forty years? Evolution, 47:1637-1653, 1993.

    Article  Google Scholar 

  • K. Schredelseker. On the value of information in financial decisions - a simulation approach. University of Innsbruck.

    Google Scholar 

  • R. Sol é and S. Manrubia. Extinction and self-oranized criticality in a model of large-scale evolution. Physical Review, B54(8):R42-R45, 1996.

    Google Scholar 

  • N. Yildrim and M. C. Mackey. Feedback regulation in the lactose operon: A mathematical modeling study and comparison with experimental data. Biophysical Journal, 84:2841-2851, 2003.

    Article  Google Scholar 

  • H. Zhu, P. Pang, Y. Sun, and B. Dhar. Asynchronous adaptive time step in quantitative cellular automata modeling. BMC Bioinformatics, 5:85, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henning, P.A. (2008). Computational Evolution. In: Schredelseker, K., Hauser, F. (eds) Complexity and Artificial Markets. Lecture Notes in Economics and Mathematical Systems, vol 614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70556-7_14

Download citation

Publish with us

Policies and ethics