Abstract
With the rise of the Internet and other open networks, a large number of security protocols have been developed and deployed in order to provide secure communication. The analysis of such security protocols has turned out to be extremely difficult for humans, as witnessed by the fact that many protocols were found to be flawed after deployment. This has driven the research in formal analysis of security protocols. Unfortunately, there are no effective approaches yet for constructing correct and efficient protocols, and work on concise formal logics that might allow one to easily prove that a protocol is correct in a formal model, is still ongoing. The most effective approach so far has been automated falsification or verification of such protocols with state-of-the-art tools such as ProVerif [1] or the Avispa tools [2]. These tools have shown to be effective at finding attacks on protocols (Avispa) or establishing correctness of protocols (ProVerif).
This work was partially supported by the Hasler Foundation, ManCom project 2071.
Chapter PDF
Similar content being viewed by others
Keywords
- Operational Semantic
- Security Protocol
- Attack Trace
- Computer Security Foundation Workshop
- Security Claim
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), pp. 82–96. IEEE, Los Alamitos (2001)
Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, L., Drielsma, P., Heám, P., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vigneron, L.: The AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)
Cremers, C.: Feasibility of multi-protocol attacks. In: Proc. of The 1st Int. Conf. on Availability, Reliability and Security (ARES), pp. 287–294. IEEE, Los Alamitos (2006)
Cremers, C., Mauw, S.: Operational semantics of security protocols. In: Leue, S., Systä, T.J. (eds.) Scenarios: Models, Transformations and Tools. LNCS, vol. 3466, pp. 66–89. Springer, Heidelberg (2005)
Song, D.: An Automatic Approach for Building Secure Systems. PhD thesis, UC Berkeley (December 2003)
Doghmi, S., Guttman, J.D., Thayer, F.: Skeletons, homomorphisms, and shapes: Characterizing protocol executions. In: Proc. of the 23rd Conf. on the Mathematical Foundations of Programming Semantics (MFPS XXIII). ENTCS, vol. 173, pp. 85–102. Elsevier ScienceDirect, Amsterdam (2007)
Security Protocols Open Repository, http://www.lsv.ens-cachan.fr/spore
Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D. dissertation, Eindhoven University of Technology (2006)
Cremers, C., Lafourcade, P.: Comparing state spaces in automatic protocol verification. In: Proc. of the 7th Int. Workshop on Automated Verification of Critical Systems (AVoCS 2007). ENTCS (September 2007) (to appear)
Cremers, C., Mauw, S.: Generalizing Needham-Schroeder-Lowe for multi-party authentication, CSR 06-04, Eindhoven University of Technology (2006)
Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S., Radomirović, S.: A framework for compositional verification of security protocols. Information and Computation 206, 425–459 (2008)
Cremers, C.: On the protocol composition logic PCL. In: Abe, M., Gligor, V. (eds.) Proc. of the ACM Symposium on Information, Computer & Communication Security (ASIACCS 2008), Tokyo, pp. 66–76. ACM Press, New York (2008)
Meier, S.: A formalization of an operational semantics of security protocols. Diploma thesis, ETH Zurich (August 2007), http://people.inf.ethz.ch/meiersi/fossp/index.html
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cremers, C.J.F. (2008). The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In: Gupta, A., Malik, S. (eds) Computer Aided Verification. CAV 2008. Lecture Notes in Computer Science, vol 5123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70545-1_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-70545-1_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70543-7
Online ISBN: 978-3-540-70545-1
eBook Packages: Computer ScienceComputer Science (R0)