Skip to main content

Computerized Classification of Mammary Gland Patterns in Whole Breast Ultrasound Images

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5116)

Abstract

Several whole breast ultrasound (US) scanners have recently been developed for breast cancer screening. In ultrasonographic screening techniques that utilize scanners, assessment of the mammary gland pattern in US images by a radiologist is required. We developed a method of mammary gland analysis to automatically classify whole breast US images into three categories: mottled pattern (MP), intermediate pattern (IP), and atrophic pattern (AP). Our database included 50 patients who underwent US of the entire breast, and they were classified as 12 MP, 24 IP, and 14 AP cases. First, we extracted a volume of interest (VOI) including mammary gland regions. Following this, we extracted image features, i.e., the average pixel value (APV), the number of small hypoechoic regions (SHR), and Haralick’s texture features, from the VOI. Finally, a canonical discriminant analysis with APV, SHR, and four texture features was applied for classification of mammary gland patterns. The performance of this classification method was 82.0% (41/50). We found that it is possible to classify whole breast ultrasound images based on mammary gland patterns. The classification method can be applied to estimate the risk of breast cancer based on US images, and it could also be applied in computer-aided diagnosis (CAD) systems for the detection of ultrasonographic breast cancer.

Keywords

  • whole breast ultrasonography
  • mammary gland pattern
  • image analysis
  • automated classification

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-70538-3_27
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-70538-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Minami, Y., Tsubono, Y., Nishino, Y., Ohuchi, N., Shibuya, D., Hisamichi, S.: The increase of female breast cancer incidence in Japan: Emergence of birth cohort effect. Int. J. Cancer 108, 901–906 (2004)

    CrossRef  Google Scholar 

  2. Zonderland, H.M., Coerkamp, E.G., de Vijver, M.J.V., Voorthuisen, A.E.V.: Diagnosis of breast cancer: Contribution of US as an adjunct to mammography. Radiology 213, 413–422 (1999)

    Google Scholar 

  3. Rosenberg, R.D., Hunt, W.C., Williamson, M.R., Gilliland, F.D., Wiest, P.W., Kelsey, C.A., Key, C.R., Linver, M.N.: Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: Review of 183,134 Screening Mammograms in Albuquerque, New Mexico. Radiology 209, 511–518 (1998)

    Google Scholar 

  4. Soo, M.S., Rosen, E.L., Baker, J.A., Vo, T.T., Boyd, B.A.: Negative predictive value of sonography with mammography in patients with palpable breast lesions. Am. J. Roentgenol. 177, 1167–1170 (2001)

    Google Scholar 

  5. Chou, Y.H., Tiu, C.M., Chen, J., Chang, R.F.: Automated full-field breast ultrasonography: The past and the present. J. Med. Ultrasound 15, 31–44 (2007)

    CrossRef  Google Scholar 

  6. Takada, E., Ikedo, Y., Fukuoka, D., Fujita, H., Endo, T., Morita, T.: Semi-automatic ultrasonic full-breast scanner and computer-assisted detection system for breast cancer mass screening. In: Emelianov, S.Y., McAleavey, S.A. (eds.) Proc. of SPIE, Medical Imaging 2007: Ultrasonic Imaging and Signal Processing, vol. 6513, pp. 651310–1–651310–8. SPIE, Bellingham (2007)

    Google Scholar 

  7. Wolfe, J.N.: Breast patterns as an index of risk for developing breast cancer. Am. J. Roentgenol. 126, 1130–1139 (1976)

    Google Scholar 

  8. Tahoces, P.G., Correa, J., Souto, M., Gomez, L., Vidal, J.J.: Computer-assisted diagnosis: the classification of mammographic breast parenchymal patterns. Phys. Med. Biol. 40, 103–117 (1995)

    CrossRef  Google Scholar 

  9. Byng, J.W., Boyd, N.F., Fishell, E., Jong, R.A., Yaffe, M.J.: Automated analysis of mammographic densities. Phys. Med. Biol. 41, 909–923 (1996)

    CrossRef  Google Scholar 

  10. Huo, Z., Giger, M.L., Wolverton, D.E., Zhong, W., Cumming, S., Olopade, O.I.: Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: Feature selection. Med. Phys. 27, 4–12 (2000)

    CrossRef  Google Scholar 

  11. Matsubara, T., Yamasaki, D., Kato, M., Hara, T., Fujita, H., Iwase, T., Endo, T.: An automated classification scheme for mammograms based on amount and distribution of fibroglandular breast tissue density. In: Lemke, H., Vannier, M., Inamura, K., Farman, A., Doi, K. (eds.) CARS 2001 - Computer Assisted Radiology and Surgery. Proc. of the 15th International Congress and Exhibition, pp. 515–520. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  12. Chang, R.F., Chang-Chien, K.C., Takada, E., Suri, J.S., Moon, W.K., Wu, J.H.K., Cho, N., Wang, Y.F., Chen, D.R.: Breast density analysis in 3-D whole breast ultrasound images. In: Proc. of the 28th IEEE EMBS Annual International Conference, pp. 2795–2798 (2006)

    Google Scholar 

  13. Ikedo, Y., Fukuoka, D., Hara, T., Fujita, H., Takada, E., Endo, T., Morita, T.: Development of a fully automatic scheme for detection of masses in whole breast ultrasound images. Med. Phys. 34, 4378–4388 (2007)

    CrossRef  Google Scholar 

  14. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    CrossRef  Google Scholar 

  15. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973)

    CrossRef  Google Scholar 

  16. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–184 (1936)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ikedo, Y. et al. (2008). Computerized Classification of Mammary Gland Patterns in Whole Breast Ultrasound Images. In: Krupinski, E.A. (eds) Digital Mammography. IWDM 2008. Lecture Notes in Computer Science, vol 5116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70538-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70538-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70537-6

  • Online ISBN: 978-3-540-70538-3

  • eBook Packages: Computer ScienceComputer Science (R0)