Skip to main content

Automotive Systems

  • Chapter
Embedded Robotics
  • 3304 Accesses

Modern automobiles are a real gathering place for embedded systems. Each new car has between twenty and one hundred embedded controllers, each dedicated to one particular task. There are individual controllers for engine control, dashboard displays, trip computer, keyless entry, electric seat adjustment and position memory, mirror adjustment, power windows, cruise control, and airbag control. Advanced safety features such as ABS (anti-lock breaking system) and ESP (electronic stability program) have their individual embedded systems, as do more advanced features such as automatic headlight switch, rain sensor, parking distance sensors, and so on.

With new features being added to automobiles every day, it is cheaper to add additional embedded controllers than to develop a single monolithic automotive computer system. Also, individual embedded systems can be replaced more easily in case of a defect. However, drawbacks of having many individual controllers in a car are the need to include one or more bus systems for interfacing the controllers. Each controller has to meet the bus specification in order to not disturb the communication of others, as well as to comply with EMC (electromagnetic compatibility) restrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

26.8 References

  • Bertozzi, M., Broggi A., Castelluccio S. A real-time oriented system for vehicle detection, EUROMICRO Journal of Systems Architecture, vol. 43, no. 1-5, March 1997, pp. 317-325 (9)

    Article  Google Scholar 

  • Betke, M., Haritaoglu, E., Davis, L. Multiple Vehicle Detection and Track-ing in Hard Real Time, Computer Vision Laboratory, Center for Auto-mation Research, Institute for Advanced Computer Studies, Technical Report CS-TR-3667, University of Maryland, College Park, July 1996

    Google Scholar 

  • Bmw. BMW Magazin special - Der neue 5er. 2003, pp. (72)

    Google Scholar 

  • Bourgou, S. Objekterkennung und Tracking für autonome Fahrzeuge, Bach-elor thesis, Technical University München TUM, supervised by T. Bräunl and G. Färber, 2007, pp. (41)

    Google Scholar 

  • Bräunl, T. Improv and EyeBot - Real-Time Vision on-board Mobile Ro-bots, 4th Annual Conference on Mechatronics and Machine Vision in Practice (M2VIP), Toowoomba QLD, Australia, Sep. 1997, pp.131-135 (5)

    Google Scholar 

  • Bräunl, T., Franke, U. Method and device for the video-based monitoring and measurement of the lateral environment of a vehicle - Verfahren und Vorrichtung zur videobasierten Beobachtung und Vermessung der seitlichen Umgebung eines Fahrzeugs, Patent application - Schutz-rechtsanmeldung 102 44 148.0-32, submitted 23 Sep. 2002, DC Akte P1 12799/DE/1, in cooperation with Daimler Research Esslingen/ Ulm, March 2003, Submitted as international patent in Europe, Japan, and USA, 23 Sep. 2003, http://v3.espacenet.com/text-doc?DB=EPODOC &IDX=WO2004029877 &F=0 &QPN=WO2004029877Daimler internal report, June 2001

  • Bräunl, T., Baltes, J. Introducing the "not so Grand Challenge", http:// robotics.ee.uwa.edu.au/nsgc/, 2005

  • Bräunl, T. Improv - Image Processing for Robot Vision, http://robotics. ee.uwa.edu.au/improv2006

  • Bretz, E. By-wire cars turn the corner, IEEE Spectrum, vol. 38, no. 4, Apr. 2001, pp. 68-73 (6)

    Article  Google Scholar 

  • Choi, I., Chien, S. A Generalized Symmetry Transform With Selective Attention Capability for Specific Corner Angles, IEEE Signal Processing Let-ters, vol. 11, no. 2, Feb. 2004, pp. 255-257 (3)

    Article  Google Scholar 

  • Daimlerchrysler. Answers for questions to come, Annual Report 2001, DaimlerChrysler AG, Stuttgart, 2001, pp. (130)

    Google Scholar 

  • Darpa, Grand Challenge, http://www.darpa.mil/grandchallenge/ index.asp, 2006

  • Dickmanns, E. Normierte Krümmungsfunktionen zur Darstellung und Erken-nung ebener Figuren, DAGM-Symposium 1985, Erlangen, Germany, 1985, pp. 58-62 (5)

    Google Scholar 

  • Dickmanns, E. Dynamic Vision for Perception and Control of Motion, Springer, Heidelberg, 2007, pp. (486)

    Google Scholar 

  • Dickmanns. E., Mysliwetz, .B. Recursive 3-D road and relative ego-state rec-ognition, IEEE Transaction on Pattern Analysis and Machine Intelli-gence, vol. 14, 1992, pp. 199-213 (15)

    Article  Google Scholar 

  • Dickmanns, E., Zapp, A., Otto, K. Ein Simulationskreis zur Entwicklung einer automatischen Fahrzeugführung mit bildhaften und iner-tialen Signalen. 2. Symposium Simulationstechnik, Wien, Austria, 1984, pp. 554-558 (5)

    Google Scholar 

  • Freeman, W., Adelson, E. The design and use of steerable filters, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13 no. 9, 1991, pp. 891-906 (16)

    Article  Google Scholar 

  • Hawe, S. A Component-Based Image Processing Framework for Automotive Vision, Diploma/Master Thesis, Technical University München TUM, supervised by T. Bräunl and G. Färber, 2008, pp. (87)

    Google Scholar 

  • Hönninger, H. Plenty of Traffic in Vehicles’ Central Nervous Systems, Bosch Research Info, News from Research and Development, no. 2, 2006, pp. (4), http://researchinfo.bosch.com

  • Huebner, K. A 1-Dimensional Symmetry Operator for Image Feature Extrac-tion in Robot Applications, 16th International Conference on Vision Interface (VI’03), 2003, pp. 286-291 (6)

    Google Scholar 

  • Intel. Open Source Computer Vision Library, http://www.intel.com/ technology/computing/opencv/, 2008

  • ISO. Road vehicles - Controller area network (CAN) - Part 1: Data link layer and physical signalling, ISO standard 11898-1:2003, TC 22/SC 3, 2003, pp. (45)

    Google Scholar 

  • ISO. Road vehicles - Communication on FlexRay - Part 1: General description and use case definition, ISO standard 10681-1:2007, TC 22/SC 3, standards under development, 2007

    Google Scholar 

  • Kaske, A. Wolf, D., Husson, R. Lane boundary detection using statistical criteria, International Conference on Quality by Artificial Vision, QCAV'97, Le Creusot, France, 1997, pp. 28-30 (3)

    Google Scholar 

  • Kasprzak, W., Niemann, H. Adaptive Road Recognition and Ego-state Track-ing in the Presence of Obstacles, International Journal of Computer Vision, 28(1), 526 (1998), Kluwer, vol. 28, no. 1, 1998, pp. 5-26 (22)

    Article  Google Scholar 

  • Kreucher, C., Lakshmanan, S. LANA: a lane extraction algorithm that uses frequency domain features, IEEE Transactions on Robotics and Auto-mation, vol. 15, no. 2, 1999, pp. 343-350 (8)

    Article  Google Scholar 

  • Marola, G. Using symmetry for detecting and locating objects in a picture, Computer Vision, Graphics and Image Processing, Vol. 46, May 1989, pp. 179-195 (17)

    Article  Google Scholar 

  • Mccall, J., Trivedi, M. Video Based Lane Estimation and Tracking for Driver Assistance: Survey, Systems and Evaluation, IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 1, 2006, pp. 20-37 (18)

    Article  Google Scholar 

  • Papageorgiou, C., Oren, M., Poggio, T. A General Framework for Object Detection, Proceedings of the Sixth International Conference on Computer Vision, IEEE, 1998, pp. 555-563 (9)

    Google Scholar 

  • Reisfeld, D., Wolfson, H., Yeshurun, Y. Context-Free Attentional Operators: The Generalized Symmetry Transform, International Journal of Computer Vision, vol. 14, 1995, pp. 119-130 (12)

    Article  Google Scholar 

  • Seetharaman, G., Lakhotia, A., Blasch, E., Unmanned Vehicles Come of Age: The DARPA Grand Challenge, IEEE Computer, Dec. 2006, pp. 26-29 (4)

    Google Scholar 

  • Thomanek, F., Dickmanns E., Dickmanns, D. Multiple object recognition and scene interpretation for autonomous road vehicle guidance, IEEE Intelligent Vehicles Symposium ‘94, Paris, France, Oct. 1994, 231-236 (6)

    Google Scholar 

  • Thrun S., et al. Stanley: The Robot that Won the DARPA Grand Challenge, Journal of Field Robotics, vol. 23, no. 9, 2006, pp. 661-692 (32)

    Article  Google Scholar 

  • Wang, Y., Shen, D., Teoh, E. Lane detection using spline model, Pattern Recognition Letters, vol. 21, no. 8, 2000, pp. 677-689 (13)

    Google Scholar 

  • Yim, Y. Oh, S. Three-feature based automatic lane detection algorithm (TFALDA) for autonomous driving, IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 4, 2003, pp. 219-225 (7)

    Article  Google Scholar 

  • Zeisl, B. Robot Control and Lane Detection with Mobile Phones, Bachelor thesis, Technical University München TUM, supervised by T. Bräunl and G. Färber, 2007, pp. (93)

    Google Scholar 

  • Zhou, Y., Wang, X., Zhou, M. The Research and Realization for Passenger Car CAN Bus, The 1st International Forum on Strategic Technology, Oct. 2006, pp. 244-247 (4)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Automotive Systems. In: Embedded Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70534-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70534-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70533-8

  • Online ISBN: 978-3-540-70534-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics