A Tableaux System for Deontic Action Logic

  • Pablo F. Castro
  • T. S. E. Maibaum
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5076)

Abstract

In [1] and [2] we have introduced a novel deontic action logic for reasoning about fault-tolerance. In this paper we present a tableaux method for this logic; this proof system is sound and complete, and because the logic has the usual boolean operators on actions, it also allows us to deal successfully with action complement and parallel execution of actions. Finally, we describe an example of application of this proof system which shows how the tableaux system can be used to obtain (counter-) models of specifications.

Keywords

Modal Logic Deontic Action Logic Tableaux Systems Fault-tolerance Software Specification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Castro, P., Maibaum, T.: An ought-to-do deontic logic for reasoning about fault-tolerance: The diarrheic philosophers. In: 5th IEEE International Conference on Software Engineering and Formal Methods. IEEE, Los Alamitos (2007)Google Scholar
  2. 2.
    Castro, P., Maibaum, T.: A complete and compact deontic action logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 109–123. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Kent, S., Quirk, B., Maibaum, T.: Specifying deontic behavior in modal action logic. Technical report, Forest Research Project (1991)Google Scholar
  4. 4.
    Meyer, J.: A different approach to deontic logic: Deontic logic viewed as variant of dynamic logic. Notre Dame Journal of Formal Logic 29 (1988)Google Scholar
  5. 5.
    Fiadeiro, J., Maibaum, T.: Temporal theories as modularization units for concurrent system specification. Formal Aspects of Computing 4, 239–272 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Broersen, J.: Modal Action Logics for Reasoning about Reactive Systems. PhD thesis, Vrije University (2003)Google Scholar
  7. 7.
    Castro, P., Maibaum, T.: Reasoning about system-degradation and fault-recovery with deontic logic. In: Workshop on Methods, Models and Tools for Fault-Tolerance (2007)Google Scholar
  8. 8.
    Smullyian, R.: First-Order Logic. Springer, New York (1968)Google Scholar
  9. 9.
    Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer, Heidelberg (1990)MATHGoogle Scholar
  10. 10.
    Pratt, V.: A Practical Decision Method for Propositional Dynamic Logic. In: ACM Symposium on Theory of Computing (1978)Google Scholar
  11. 11.
    Fitting, M.: Tableau methods of proof for modal logics. Notre Dame Journal of Formal Logic XIII (April 1972)Google Scholar
  12. 12.
    Giacomo, G., Massacci, F.: Tableaux and algorithms for propositional dynamic logic with converse. In: Conference on Automated Deduction (1996)Google Scholar
  13. 13.
    Maibaum, T.: Temporal reasoning over deontic specifications. In: Sons, J.W. (ed.) Deontic Logic in Computer Science (1993)Google Scholar
  14. 14.
    Meyer, J., Wieringa, R., Dignum, F.: The paradoxes of deontic logic revisited: A computer science perspective. Technical Report UU-CS-1994-38, Utrecht University (1994)Google Scholar
  15. 15.
    Khosla, S., Maibaum, T.: The prescription and description of state-based systems. In: Banieqnal, B., Pnueli, H.A. (eds.) Temporal Logic in Computation. Springer, Heidelberg (1985)Google Scholar
  16. 16.
    Gargov, G., Passy, S.: A note on boolean logic. In: Petkov, P.P. (ed.) Proceedings of the Heyting Summerschool. Plenum Press (1990)Google Scholar
  17. 17.
    Fitch, F.B.: Tree proofs in modal logics. Journal of Symbolic Logic (1966)Google Scholar
  18. 18.
    Monk, J.: Mathematical Logic. Graduate Texts in Mathematics. Springer, Heidelberg (1976)MATHGoogle Scholar
  19. 19.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. Springer, Heidelberg (1985)MATHGoogle Scholar
  20. 20.
    Belzer, M.: Legal reasoning in 3-d. In: ICAIL, pp. 155–163 (1987)Google Scholar
  21. 21.
    Artosi, A., Governatori, G.: A tableau methodology for deontic conditional. In: DEON 1998, International Workshop on Deontic Logic in Computer Science, pp. 65–81 (1998)Google Scholar
  22. 22.
    Governatori, G., Lomuscio, A., Sergot, M.J.: A tableaux system for deontic interpreted systems. In: Gedeon, T.D., Fung, L.C.C. (eds.) AI 2003. LNCS (LNAI), vol. 2903, pp. 339–351. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pablo F. Castro
    • 1
  • T. S. E. Maibaum
    • 1
  1. 1.Department of Computing & SoftwareMcMaster UniversityHamiltonCanada

Personalised recommendations