Need to Know: Questions and the Paradox of Epistemic Obligation

  • Joris Hulstijn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5076)


Åqvist’s paradox of epistemic obligation can be solved, if we use knowledge-wh instead of knowledge-that in specifications of the ‘need to know’: the knowledge which an agent in a certain organisational role is required to have. Knowledge-wh is knowledge of an answer to a question, which depends on the context. We show how knowledge-wh can be formalised in a logic of questions, which is combined with standard deontic logic to represent epistemic obligations. We demonstrate that under the new interpretation, the paradox can no longer be derived. The resulting logic is useful for representation of access control policies.


Accessibility Relation Epistemic Logic Access Control Policy Deontic Logic Derivation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Åqvist, L.: A new approach to the logical theory of interrogatives. Almqvist and Wiksell, Uppsala (1965)Google Scholar
  2. 2.
    Åqvist, L.: Good samaritans, contrary-to-duty imperatives, and epistemic obligations. Noûs 1(4), 361–379 (1967)CrossRefGoogle Scholar
  3. 3.
    Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: IEEE Symposium on Security and Privacy, pp. 164–173 (1996)Google Scholar
  4. 4.
    Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Practical Cryptography for Data Internetworks, pp. 1871–1989. IEEE, Los Alamitos (1996)Google Scholar
  5. 5.
    ten Cate, B., chieh Shan, C.: Axiomatizing groenendijk’s logic of interrogation. In: Questions in dynamic semantics, pp. 63–82. Elsevier, Amsterdam (2007)Google Scholar
  6. 6.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  7. 7.
    Gamut, L.: Logic, Language and Meaning. Intensional Logic and Logical Grammar, vol. II. University of Chicago Presss, Chicago (1991)Google Scholar
  8. 8.
    Gerbrandy, J., Groeneveld, W.: Reasoning about information change. Journal of logic, language and information 6(2), 147–170 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Ginzburg, J.: Resolving questionsI. Linguistics and Philosophy 18, 459–527 (1995)CrossRefGoogle Scholar
  10. 10.
    Groenendijk, J.: The logic of interrogation: classical version. In: Matthews, T., Strolovitch, D. (eds.) Proceedings of SALT-9. CLC Publications (1999)Google Scholar
  11. 11.
    Groenendijk, J., Stokhof, M.: Studies on the Semantics of Questions and the Pragmatics of Answers. PhD thesis, University of Amsterdam (1984)Google Scholar
  12. 12.
    Groenendijk, J., Stokhof, M.: Questions. In: van Benthem, J., ter Meulen, A. (eds.) Handbook of Logic and Language, pp. 1055–1124. Elsevier, Amsterdam (1996)Google Scholar
  13. 13.
    Hart, S., Heifetz, A., Samet, D.: knowing whether, knowing that and the cardinality of state spaces. Journal of Economic Theory 70(1), 249–256 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)Google Scholar
  15. 15.
    van der Hoek, W.: Systems for knowledge and belief. Journal of Logic and Computation 3(1), 173–193 (1993)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75, 63–92 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, CSLI , Stanford University (Spring 2006)Google Scholar
  18. 18.
    Meyer, J.-J.C., Wieringa, R.J. (eds.): Deontic Logic in Computer Science: Normative System Specification. Wiley and Sons, Chichester (1993)zbMATHGoogle Scholar
  19. 19.
    Pacuit, E., Parikh, R., Cogan, E.: The logic of knowledge based obligation. Synthese 149(2), 311–341 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    van der Sandt, R.: Presupposition projection as anaphora resolution. Journal of Semantics 9, 333–377 (1992)CrossRefGoogle Scholar
  21. 21.
    Tomberlin, J.E.: Contrary-to-duty imperatives and conditional obligation. Noûs 15(3), 357–375 (1981)CrossRefMathSciNetGoogle Scholar
  22. 22.
    van der Torre, L., Tan, Y.-H.: Contrary-to-duty reasoning with preference-based dyadic obligations. Annals of Math. and Artificial Intelligence 27, 49–78 (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ullman, J.: Principles of Database Systems. Computer Science Press (1982)Google Scholar
  24. 24.
    Veltman, F.: Defaults in update semantics. Journal of Philosophical Logic 25(3), 221–262 (1996)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joris Hulstijn
    • 1
  1. 1.Faculty of Economics and Business AdministrationVrije UniversiteitAmsterdam 

Personalised recommendations