Skip to main content
Book cover

Measles pp 163–191Cite as

Measles Virus Interaction with Host Cells and Impact on Innate Immunity

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 329))

Because viruses are obligate parasites, numerous partnerships between measles virus and cellular molecules can be expected. At the entry level, measles virus uses at least two cellular receptors, CD150 and a yet to be identified epithelial receptor to which the virus H protein binds. This dual receptor strategy illuminates the natural infection and inter-human propagation of this lymphotropic virus. The attenuated vaccine strains use CD46 as an additional receptor, which results in a tropism alteration. Surprisingly, the intracellular viral and cellular protein partnership leading to optimal virus life cycle remains mostly a black box, while the interactions between viral proteins that sustain the RNA-dependant RNA polymerase activity (i.e., transcription and replication), the particle assembly and the polarised virus budding are documented. Hsp72 is the only cellular protein that is known to regulate the virus transcription and replication through its interaction with the viral N protein. The viral P protein is phosphorylated by the casein kinase II with undetermined functional consequences. The cellular partnership that controls the intracellular trafficking of viral components, the assembly and/or the budding of measles virus, remains unknown. The virus to cell innate immunity war is better documented. The 5′ triphosphate-ended virus leader transcript is recognised by RIG-I, a cellular helicase, and induces the interferon response. Measles virus V protein binds to the MDA5 helicase and prevents the MDA5-mediated activation of interferon. By interacting with STAT1 and Jak1, the viral P and V proteins prevent the type I interferon receptor (IFNAR) signalling. The virus N protein interacts with eIF3-p40 to inhibit the translation of cellular mRNA. The H protein binds to TLR2, which then transduces an activation signal and CD150 expression in monocytes. The P protein activates the expression of the ubiquitin modifier A20, thus blocking the TLR4-mediated signalling. Few other partnerships between measles virus components and cellular proteins have been postulated or demonstrated, and they need further investigations to understand their physiopathological outcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE (2004) The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A 101:17264–17269

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, Schneider-Schaulies S (2001) Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Muller N, Klett M, Schneider-Schaulies S (2004) Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78:9552–9559

    Article  PubMed  CAS  Google Scholar 

  • Avota E, Harms H, Schneider-Schaulies S (2006) Measles virus induces expression of SIP110, a constitutively membrane clustered lipid phosphatase, which inhibits T cell proliferation. Cell Microbiol 8:1826–1839

    Article  PubMed  CAS  Google Scholar 

  • Bankamp B, Horikami SM, Thompson PD, Huber M, Billeter M, Moyer SA (1996) Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216:272–277

    Article  PubMed  CAS  Google Scholar 

  • Bankamp B, Hodge G, McChesney MB, Bellini WJ, Rota PA (2007) Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 373:39–50

    Article  PubMed  CAS  Google Scholar 

  • Bass BL, Weintraub H, Cattaneo R, Billeter MA (1989) Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 56:331

    Article  PubMed  CAS  Google Scholar 

  • Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, Wagner H, Kirschning CJ, Ter Meulen V, Schneider-Schaulies S (2002) Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736

    Article  PubMed  CAS  Google Scholar 

  • Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P (1986) Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology 149:91–106

    Article  PubMed  CAS  Google Scholar 

  • Buchholz CJ, Koller D, Devaux P, Mumenthaler C, Schneider-Schaulies J, Braun W, Gerlier D, Cattaneo R (1997) Mapping of the primary binding site of measles virus to its receptor CD46. J Biol Chem 272:22072–22079

    Article  PubMed  CAS  Google Scholar 

  • Caignard G, Guerbois M, Labernardiere JL, Jacob Y, Jones LM, Wild F, Tangy F, Vidalain PO (2007) Measles virus V protein blocks Jak1-mediated phosphorylation of STAT1 to escape IFN-alpha/beta signaling. Virology 368:351–362

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Carsillo M, Niewiesk S, Vasconcelos D, Oglesbee M (2004) Hyperthermic pre-conditioning promotes measles virus clearance from brain in a mouse model of persistent infection. Brain Res 1004:73–82

    Article  PubMed  CAS  Google Scholar 

  • Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006a) hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  CAS  Google Scholar 

  • Carsillo T, Zhang X, Vasconcelos D, Niewiesk S, Oglesbee M (2006b) A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus. J Virol 80:2904–2912

    Article  CAS  Google Scholar 

  • Cattaneo R, Billeter MA (1992) Mutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol 176:63–74

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Rose JK (1993) Cell fusion by the envelope glycoproteins of persistent measles viruses which caused lethal human brain disease. J Virol 67:1493–1502

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Rebmann G, Baczko K, Ter Meulen V, Bellini WJ, Rozenblatt S, Billeter MA (1986) Accumulated measles virus mutations in a case of subacute sclerosing panencephali-tis: interrupted matrix protein reading frame and transcription alteration. Virology 154:97–107

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter MA (1988) Biased hypermuta-tion and other genetic changes in defective measles viruses in human brain infections. Cell 55:255–265

    Article  PubMed  CAS  Google Scholar 

  • Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764

    Article  PubMed  CAS  Google Scholar 

  • Chazal N, Gerlier D (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67:226–237

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Gerlier D (2006) Viral hijacking of cellular ubiquitination pathways as an anti-innate immunity strategy. Viral Immunol 19:349–362

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Cortay JC, Gerlier D (2003) Measles virus protein interactions in yeast: new findings and caveats. Virus Res 98:123–129

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Cortay JC, Logan IR, Sapountzi V, Robson CN, Gerlier D (2005) Inhibition of ubiquiti-nation and stabilization of human ubiquitin E3 ligase PIRH2 by measles virus phosphoprotein. J Virol 79:11824–11836

    Article  PubMed  CAS  Google Scholar 

  • Childs K, Stock N, Ross C, Andrejeva J, Hilton L, Skinner M, Randall R, Goodbourn S (2007) mda-5, but not RIG-I, is a common target for paramyxovirus V proteins. Virology 359:190–200

    Article  PubMed  CAS  Google Scholar 

  • Condack C, Grivel JC, Devaux P, Margolis L, Cattaneo R (2007) Measles virus vaccine attenuation: suboptimal infection of lymphatic tissue and tropism alteration. J Infect Dis 196:541–549

    Article  PubMed  CAS  Google Scholar 

  • Connor JH, McKenzie MO, Parks GD, Lyles DS (2007) Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology 362:109–119

    Article  PubMed  CAS  Google Scholar 

  • Cruz CD, Palosaari H, Parisien JP, Devaux P, Cattaneo R, Ouchi T, Horvath CM (2006) Measles virus V protein inhibits p53 family member p73. J Virol 80:5644–5650

    Article  PubMed  CAS  Google Scholar 

  • Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP (2008) The C-terminal regulatory domain is the RNA 5'-triphos-phate sensor of RIG-I. Mol Cell 29:169–179

    Article  PubMed  CAS  Google Scholar 

  • Das T, Schuster A, Schneider-Schaulies S, Banerjee AK (1995) Involvement of cellular casein kinase II in the phosphorylation of measles virus P protein: identification of phosphorylation sites. Virology 211:218–226

    Article  PubMed  CAS  Google Scholar 

  • de Swart RL, Ludlow M, de Witte L, Yanagi Y, van Amerongen G, McQuaid S, Yuksel S, Geijtenbeek TB, Duprex WP, Osterhaus AD (2007) Predominant infection of CD150 + lymphocytes and dendritic cells during measles virus infection of macaques. PLoS Pathog 3:e178

    Google Scholar 

  • Devaux P, Cattaneo R (2004) Measles virus phosphoprotein gene products: conformational flexibility of the P/V protein amino-terminal domain and C protein infectivity factor function. J Virol 78:11632–11640

    Article  PubMed  CAS  Google Scholar 

  • Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83

    Article  PubMed  CAS  Google Scholar 

  • Devaux P, Hodge G, McChesney MB, Cattaneo R (2008) Attenuation of V- or C-defective measles viruses: infection control by the inflammatory and interferon responses of rhesus monkeys. J Virol 82:5359–5367

    Article  PubMed  CAS  Google Scholar 

  • Druelle J, Sellin CI, Waku-Kouomou D, Horvat B, Wild FT (2008) Wild type measles virus attenuation independent of type I IFN. Virol J 5:22

    Article  PubMed  CAS  Google Scholar 

  • Dubois-Dalcq M, Reese TS (1975) Structural changes in the membrane of vero cells infected with a paramyxovirus. J Cell Biol 67:551–565

    Article  PubMed  CAS  Google Scholar 

  • Enders JF, Peebles TC (1954) Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 86:277–286

    PubMed  CAS  Google Scholar 

  • Escoffier C, Gerlier D (1999) Infection of chicken embryonic fibroblasts by measles virus: adaptation at the virus entry level. J Virol 73:5220–5224

    PubMed  CAS  Google Scholar 

  • Escoffier C, Manie S, Vincent S, Muller CP, Billeter M, Gerlier D (1999) Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. J Virol 73:1695–1698

    PubMed  CAS  Google Scholar 

  • Evlashev A, Valentin H, Rivailler P, Azocar O, Rabourdin-Combe C, Horvat B (2001) Differential permissivity to measles virus infection of human and CD46-transgenic murine lymphocytes. J Gen Virol 82:2125–2129

    PubMed  CAS  Google Scholar 

  • Follett EA, Pringle CR, Pennington TH (1976) Events following the infections of enucleate cells with measles virus. J Gen Virol 32:163–175

    Article  PubMed  CAS  Google Scholar 

  • Fontana JM, Bankamp B, Bellini WJ, Rota PA (2008) Regulation of interferon signaling by the C, V proteins from attenuated and wild-type strains of measles virus. Virology 374:71–81

    Article  PubMed  CAS  Google Scholar 

  • Fugier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan MC, Liu YJ, Rabourdin-Combe C (1997) Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823

    Article  PubMed  CAS  Google Scholar 

  • Gerlier D, Trescol-Biemont MC, Varior-Krishnan G, Naniche D, Fugier-Vivier I, Rabourdin-Combe C (1994) Efficient major histocompatibility complex class II-restricted presentation of measles virus relies on hemagglutinin-mediated targeting to its cellular receptor human CD46 expressed by murine B cells. J Exp Med 179:353–358

    Article  PubMed  CAS  Google Scholar 

  • Gerlier D, Valentin H, Laine D, Rabourdin-Combe C, Servet-Delprat C (2006) Subversion of the immune system by measles virus: a model for the intricate interplay between a virus and the human immune system. In: Lachman PG, Oldstone MBA (eds) Microbial subversion of host immunity. Caister Academic, Norwalk, UK, pp 225–292

    Google Scholar 

  • Gombart AF, Hirano A, Wong TC (1995) Nucleoprotein phosphorylated on both serine and threo-nine is preferentially assembled into the nucleocapsids of measles virus. Virus Res 37:63–73

    Article  PubMed  CAS  Google Scholar 

  • Graves M, Griffin DE, Johnson RT, Hirsch RL, de Soriano IL, Roedenbeck S, Vaisberg A (1984) Development of antibody to measles virus polypeptides during complicated and uncomplicated measles virus infections. J Virol 49:409–412

    PubMed  CAS  Google Scholar 

  • Haller O, Staeheli P, Kochs G (2007) Interferon-induced Mx proteins in antiviral host defense. Biochimie 89:812–818

    Article  PubMed  CAS  Google Scholar 

  • Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8:193–204

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Hu C, Nakamura T, Marks JD, Russell SJ, Peng KW (2007) Affinity thresholds for membrane fusion triggering by viral glycoproteins. J Virol 81:13149–13157

    Article  PubMed  CAS  Google Scholar 

  • Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, Yanagi Y, Maenaka K (2007) Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A 104:19535–19540

    Article  PubMed  Google Scholar 

  • Hashimoto K, Ono N, Tatsuo H, Minagawa H, Takeda M, Takeuchi K, Yanagi Y (2002) SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76:6743–6749

    Article  PubMed  CAS  Google Scholar 

  • Herschke F, Plumet S, Duhen T, Azocar O, Druelle J, Laine D, Wild TF, Rabourdin-Combe C, Gerlier D, Valentin H (2007) Cell-cell fusion induced by measles virus amplifies the type I interferon response. J Virol 81:12859–12871

    Article  PubMed  CAS  Google Scholar 

  • Hoopengardner B (2006) Adenosine-to-inosine RNA editing: perspectives and predictions. Mini Rev Med Chem 6:1213–1216

    Article  PubMed  CAS  Google Scholar 

  • Horikami SM, Moyer SA (1995) Structure, transcription, and replication of measles virus. Curr Top Microbiol Immunol 191:35–50

    PubMed  CAS  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G (2006) 5'-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  • Huber M, Cattaneo R, Spielhofer P, Orvell C, Norrby E, Messerli M, Perriard JC, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185:299–308

    Article  PubMed  CAS  Google Scholar 

  • Katz SL, Milovanovic M V, Enders JF (1958) Propagation of measles virus in cultures of chick embryo cells. Proc Soc Exp Biol Med 97:23–29

    PubMed  CAS  Google Scholar 

  • Kouomou DW, Wild TF (2002) Adaptation of wild-type measles virus to tissue culture. J Virol 76:1505–1509

    PubMed  CAS  Google Scholar 

  • Laine D, Trescol-Biemont MC, Longhi S, Libeau G, Marie JC, Vidalain PO, Azocar O, Diallo A, Canard B, Rabourdin-Combe C, Valentin H (2003) Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcgammaRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77:11332–11346

    Article  PubMed  CAS  Google Scholar 

  • Laine D, Bourhis JM, Longhi S, Flacher M, Cassard L, Canard B, Sautes-Fridman C, Rabourdin-Combe C, Valentin H (2005) Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR, NCORE-FcgammaRIIB1 interactions, respectively. J Gen Virol 86:1771–1784

    Article  PubMed  CAS  Google Scholar 

  • Leonard VH, Sinn PL, Hodge G, Miest T, Devaux P, Oezguen N, Braun W, McCray PB Jr, McChesney MB, Cattaneo R (2008) Measles virus blind to its epithelial cell receptor remains virulent in rhesus monkeys but cannot cross the airway epithelium and is not shed. J Clin Invest 118:2448–2458

    PubMed  CAS  Google Scholar 

  • Li L, Qi Y (2002) A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 147:775–786

    Article  PubMed  CAS  Google Scholar 

  • Li LY, Qi YP (1998) The point mutations in hemagglutinin gene of measles virus are responsible for alteration in hemadsorption. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 30:488–494

    CAS  Google Scholar 

  • Liu J, Zhu Y, Chen I, Lau J, He F, Lau A, Wang Z, Karuppannan AK, Kwang J (2007) The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J Virol 81:9560–9567

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Zhou W, Zhang P, Xu Q, Hu C, Chen X, Yao L, Li L, Qi Y (2005) Expression of SLAM (CDw150) on Sf9 cell surface using recombinant baculovirus mediates measles virus infection in the nonpermissive cells. Microbes Infect 7:1235–1245

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Huntley CC, De BP, Das T, Banerjee AK, Oglesbee MJ (1997) Phosphorylation of canine distemper virus P protein by protein kinase C-zeta and casein kinase II. Virology 232:198–206

    Article  PubMed  CAS  Google Scholar 

  • Maisner A, Klenk H, Herrler G (1998) Polarized budding of measles virus is not determined by viral surface glycoproteins. J Virol 72:5276–5278

    PubMed  CAS  Google Scholar 

  • Makhortova NR, Askovich P, Patterson CE, Gechman LA, Gerard NP, Rall GF (2007) Neurokinin-1 enables measles virus trans-synaptic spread in neurons. Virology 362:235–244

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Eto DS, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MB (2000) Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974

    Article  PubMed  CAS  Google Scholar 

  • Manie SN, Debreyne S, Vincent S, Gerlier D (2000) Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311

    Article  PubMed  CAS  Google Scholar 

  • Marie JC, Saltel F, Escola JM, Jurdic P, Wild TF, Horvat B (2004) Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78:11952–11961

    Article  PubMed  CAS  Google Scholar 

  • Maruyama S, Miyajima N, Bohgaki M, Tsukiyama T, Shigemura M, Nonomura K, Hatakeyama S (2008) Ubiquitylation of epsilon-COP by PIRH2 and regulation of the secretion of PSA. Mol Cell Biochem 307:73–82

    Article  PubMed  CAS  Google Scholar 

  • Miyajima N, Takeda M, Tashiro M, Hashimoto K, Yanagi Y, Nagata K, Takeuchi K (2004) Cell tropism of wild-type measles virus is affected by amino acid substitutions in the P, V, M proteins, or by a truncation in the C protein. J Gen Virol 85:3001–3006

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Klenk HD, Herrler G, Maisner A (2001) A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H, F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem 276:17887–17894

    Article  PubMed  CAS  Google Scholar 

  • Moll M, Pfeuffer J, Klenk HD, Niewiesk S, Maisner A (2004) Polarized glycoprotein targeting affects the spread of measles virus in vitro and in vivo. J Gen Virol 85:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Mrkic B, Odermatt B, Klein MA, Billeter MA, Pavlovic J, Cattaneo R (2000) Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74:1364–1372

    Article  PubMed  CAS  Google Scholar 

  • Murabayashi N, Kurita-Taniguchi M, Ayata M, Matsumoto M, Ogura H, Seya T (2002) Susceptibility of human dendritic cells (DCs) to measles virus (MV) depends on their activation stages in conjunction with the level of CDw150: role of Toll stimulators in DC maturation and MV amplification. Microbes Infect 4:785–794

    Article  PubMed  CAS  Google Scholar 

  • Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, Lippincott-Schwartz J, Sanchez A, Rubin DH, Hodge TW (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79:11742–11751

    Article  PubMed  CAS  Google Scholar 

  • Naim HY, Ehler E, Billeter MA (2000) Measles virus matrix protein specifies apical virus release and glycoprotein sorting in epithelial cells. EMBO J 19:3576–3585

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu Y, Takeda M, Ohno S, Koga R, Yanagi Y (2006) Translational inhibition and increased interferon induction in cells infected with C protein-deficient measles virus. J Virol 80:11861–11867

    Article  PubMed  CAS  Google Scholar 

  • Nanda N, Andre P, Bao M, Clauser K, Deguzman F, Howie D, Conley PB, Terhorst C, Phillips DR (2005) Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling. Blood 106:3028–3034

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C, Gerlier D (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  • Navaratnarajah CK, Vongpunsawad S, Oezguen N, Stehle T, Braun W, Hashiguchi T, Maenaka K, Yanagi Y, Cattaneo R (2008) Dynamic interaction of the measles virus hemagglutinin with its receptor SLAM. J Biol Chem 283:11763–11771

    Article  PubMed  CAS  Google Scholar 

  • Nielsen L, Blixenkrone-Moller M, Thylstrup M, Hansen NJ, Bolt G (2001) Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146:197–208

    Article  PubMed  CAS  Google Scholar 

  • Nishie T, Nagata K, Takeuchi K (2007) The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes Infect 9:344–354

    Article  PubMed  CAS  Google Scholar 

  • Norrby E (1972) Intracellular accumulation of measles virus nucleocapsid and envelope antigens. Microbios 5:31–40

    PubMed  CAS  Google Scholar 

  • Ofir R, Weinstein Y, Bazarsky E, Blagerman S, Wolfson M, Hunter T, Rager-Zisman B (1996) Tyrosine phosphorylation of measles virus P-phosphoprotein in persistently infected neurob-lastoma cells. Virus Genes 13:203–210

    Article  PubMed  CAS  Google Scholar 

  • Ohgimoto K, Ohgimoto S, Ihara T, Mizuta H, Ishido S, Ayata M, Ogura H, Hotta H (2007) Difference in production of infectious wild-type measles and vaccine viruses in monocyte-derived dendritic cells. Virus Res 123:1–8

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Takeda M, Takeuchi K, Yanagi Y (2004) Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999

    Article  PubMed  CAS  Google Scholar 

  • Ohno Ono N, Seki F, Takeda M, Kura S, Tsuzuki T, Yanagi Y (2007) Measles virus infection of SLAM (CD150) knockin mice reproduces tropism and immunosuppression in human infection. J Virol 81:1650–1659

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    Article  PubMed  CAS  Google Scholar 

  • Palosaari H, Parisien JP, Rodriguez JJ, Ulane CM, Horvath CM (2003) STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644

    Article  PubMed  CAS  Google Scholar 

  • Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA (2001a) Analysis of the noncod-ing regions of measles virus strains in the Edmonston vaccine lineage. J Virol 75:921–933

    Article  CAS  Google Scholar 

  • Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA (2001b) Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75:910–920

    Article  CAS  Google Scholar 

  • Parks CL, Witko SE, Kotash C, Lin SL, Sidhu MS, Udem SA (2006) Role of V protein RNA binding in inhibition of measles virus minigenome replication. Virology 348:96–106

    Article  PubMed  CAS  Google Scholar 

  • Patterson JB, Thomas D, Lewicki H, Billeter MA, Oldstone MB (2000) V, C proteins of measles virus function as virulence factors in vivo. Virology 267:80–89

    Article  PubMed  CAS  Google Scholar 

  • Pelet T, Miazza V, Mottet G, Roux L (2005) High throughput screening assay for negative single stranded RNA virus polymerase inhibitors. J Virol Methods 128:29–36

    Article  PubMed  CAS  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, Reis e Sousa C (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314:997–1001

    Article  PubMed  CAS  Google Scholar 

  • Plemper RK, Hammond AL, Cattaneo R (2001) Measles virus envelope glycoproteins hetero-oli-gomerize in the endoplasmic reticulum. J Biol Chem 276:44239–44246

    Article  PubMed  CAS  Google Scholar 

  • Plumet S, Herschke F, Bourhis JM, Valentin H, Longhi S, Gerlier D (2007) Cytosolic 5'-triphos-phate ended viral leader transcript of measles virus as activator of the RIG I-mediated inter-feron response. PLoS ONE 2:e279

    Article  PubMed  CAS  Google Scholar 

  • Pohl C, Duprex WP, Krohne G, Rima BK, Schneider-Schaulies S (2007) Measles virus M, F proteins associate with detergent-resistant membrane fractions and promote formation of viruslike particles. J Gen Virol 88:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Radecke F, Billeter MA (1996) The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology 217:418–421

    Article  PubMed  CAS  Google Scholar 

  • Rager M, Vongpunsawad S, Duprex WP, Cattaneo R (2002) Polyploid measles virus with hexam-eric genome length. EMBO J 21:2364–2372

    Article  PubMed  CAS  Google Scholar 

  • Ravanel K, Castelle C, Defrance T, Wild TF, Charron D, Lotteau V, Rabourdin-Combe C (1997) Measles virus nucleocapsid protein binds to FcgammaRII and inhibits human B cell antibody production. J Exp Med 186:269–278

    Article  PubMed  CAS  Google Scholar 

  • Reutter GL, Cortese-Grogan C, Wilson J, Moyer SA (2001) Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285:100–109

    Article  PubMed  CAS  Google Scholar 

  • Riedl P, Moll M, Klenk HD, Maisner A (2002) Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. VirusRes 83:1–12

    Article  CAS  Google Scholar 

  • Rima BK, Earle JA, Baczko K, Rota PA, Bellini WJ (1995) Measles virus strain variations. Curr Top Microbiol Immunol 191:65–83

    PubMed  CAS  Google Scholar 

  • Robbins SJ (1983) Progressive invasion of cell nuclei by measles virus in persistently infected human cells. J Gen Virol 64:2335–2338

    Article  PubMed  Google Scholar 

  • Robbins SJ, Bussell RH (1979) Structural phosphoproteins associated with purified measles viri-ons and cytoplasmic nucleocapsids. Intervirology 12:96–102

    Article  PubMed  CAS  Google Scholar 

  • Robbins SJ, Bussell RH, Rapp F (1980a) Isolation and partial characterization of two forms of cytoplasmic nucleocapsids from measles virus-infected cells. J Gen Virol 47:301–310

    Article  CAS  Google Scholar 

  • Robbins SJ, Fenimore JA, Bussell RH (1980b) Structural phosphoproteins associated with measles virus nucleocapsids from persistently infected cells. J Gen Virol 48:445–449

    Article  CAS  Google Scholar 

  • Rota JS, Wang ZD, Rota PA, Bellini WJ (1994) Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317–330

    Article  PubMed  CAS  Google Scholar 

  • Runkler N, Pohl C, Schneider-Schaulies S, Klenk HD, Maisner A (2007) Measles virus nucleo-capsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Cell Microbiol 9:1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Runkler N, Dietzel E, Moll M, Klenk HD, Maisner A (2008) Glycoprotein targeting signals influence the distribution of measles virus envelope proteins and virus spread in lymphocytes. J Gen Virol 89:687–696

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Masuda M, Miura R, Yoneda M, Kai C (2006) Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 352:121–130

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Masuda M, Kanai M, Tsukiyama-Kohara K, Yoneda M, Kai C (2007) Measles virus N protein inhibits host translation by binding to eIF3-p40. J Virol 81:11569–11576

    Article  PubMed  CAS  Google Scholar 

  • Schlender J, Schnorr JJ, Spielhoffer P, Cathomen T, Cattaneo R, Billeter MA, ter Meulen V, Schneider-Schaulies S (1996) Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93:13194–13199

    Article  PubMed  CAS  Google Scholar 

  • Schlender J, Hornung V, Finke S, Gunthner-Biller M, Marozin S, Brzozka K, Moghim S, Endres S, Hartmann G, Conzelmann KK (2005) Inhibition of toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncy-tial virus and measles virus. J Virol 79:5507–5515

    Article  PubMed  CAS  Google Scholar 

  • Schneider U, von Messling V, Devaux P, Cattaneo R (2002) Efficiency of measles virus entry and dissemination through different receptors. J Virol 76:7460–7467

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Schaulies S, Schneider-Schaulies J, Schuster A, Bayer M, Pavlovic J, ter Meulen V (1994) Cell type-specific MxA-mediated inhibition of measles virus transcription in human brain cells. J Virol 68:6910–6917

    PubMed  CAS  Google Scholar 

  • Schnorr JJ, Schneider-Schaulies S, Simon-Jodicke A, Pavlovic J, Horisberger MA, ter Meulen V (1993) MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably trans-fected human monocytic cell line. J Virol 67:4760–4768

    PubMed  CAS  Google Scholar 

  • Servet-Delprat C, Vidalain PO, Bausinger H, Manie S, Le Deist F, Azocar O, Hanau D, Fischer A, Rabourdin-Combe C (2000) Measles virus induces abnormal differentiation of CD40 lig-and-activated human dendritic cells. J Immunol 164:1753–1760

    PubMed  CAS  Google Scholar 

  • Shaffer JA, Bellini WJ, Rota PA (2003) The C protein of measles virus inhibits the type I inter-feron response. Virology 315:389–397

    Article  PubMed  CAS  Google Scholar 

  • Shibahara K, Hotta H, Katayama Y, Homma M (1994) Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75:3511–3516

    Article  PubMed  CAS  Google Scholar 

  • Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto K, Saito H, Ogura H, Matsumoto M, Seya T (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123–6133

    PubMed  CAS  Google Scholar 

  • Spehner D, Drillien R, Howley PM (1997) The assembly of the measles virus nucleoprotein into nucleocapsid-like particles is modulated by the phosphoprotein. Virology 232:260–268

    Article  PubMed  CAS  Google Scholar 

  • Spielhofer P, Bachi T, Fehr T, Christiansen G, Cattaneo R, Kaelin K, Billeter MA, Naim HY (1998) Chimeric measles viruses with a foreign envelope. J Virol 72:2150–2159

    PubMed  CAS  Google Scholar 

  • Strahle L, Garcin D, Kolakofsky D (2006) Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology 351:101–111

    Article  PubMed  CAS  Google Scholar 

  • Strahle L, Marq JB, Brini A, Hausmann S, Kolakofsky D, Garcin D (2007) Activation of the beta interferon promoter by unnatural Sendai virus infection requires RIG-I and is inhibited by viral C proteins. J Virol 81:12227–12237

    Article  PubMed  CAS  Google Scholar 

  • Sun M, Fuentes SM, Timani K, Sun D, Murphy C, Lin Y, August A, Teng MN, He B (2008) Akt plays a critical role in replication of nonsegmented negative-stranded RNA viruses. J Virol 82:105–114

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2005) Contributions of matrix and large protein genes of the measles virus Edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79:15218–15225

    Article  PubMed  CAS  Google Scholar 

  • Tahara M, Takeda M, Seki F, Hashiguchi T, Yanagi Y (2007a) Multiple amino acid substitutions in hemagglutinin are necessary for wild-type measles virus to acquire the ability to use receptor CD46 efficiently. J Virol 81:2564–2572

    Article  CAS  Google Scholar 

  • Tahara M, Takeda M, Yanagi Y (2007b) Altered interaction of the matrix protein with the cyto-plasmic tail of hemagglutinin modulates measles virus growth by affecting virus assembly and cell-cell fusion. J Virol 81:6827–6836

    Article  CAS  Google Scholar 

  • Tahara M, Takeda M, Shirogane Y, Hashiguchi T, Ohno S, Yanagi Y (2008) Measles virus infects both polarized epithelial and immune cells using distinctive receptor-binding sites on its hemagglutinin. J Virol 82:4630–4637

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Watari E, Shinya E, Shimizu T, Takahashi H (2007) Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblast-oma cells. Antiviral Res 75:152–158

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Ohno S, Seki F, Nakatsu Y, Tahara M, Yanagi Y (2005) Long untranslated regions of the measles virus M, F genes control virus replication and cytopathogenicity. J Virol 79:14346–14354

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Miyajima N, Kobune F, Tashiro M (2000) Comparative nucleotide sequence analyses of the entire genomes of B95a cell-isolated and vero cell-isolated measles viruses from the same patient. Virus Genes 20:253–257

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Takeda M, Miyajima N, Kobune F, Tanabayashi K, Tashiro M (2002) Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76:4891–4900

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Kadota SI, Takeda M, Miyajima N, Nagata K (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Takeda M, Miyajima N, Ami Y, Nagata N, Suzaki Y, Shahnewaz J, Kadota S, Nagata K (2005) Stringent requirement for the C protein of wild-type measles virus for growth both in vitro and in macaques. J Virol 79:7838–7844

    Article  PubMed  CAS  Google Scholar 

  • Tatsuo H, Ono N, Tanaka K, Yanagi Y (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  PubMed  CAS  Google Scholar 

  • tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J (2002) Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76:3659–3669

    Article  PubMed  CAS  Google Scholar 

  • Valsamakis A, Schneider H, Auwaerter PG, Kaneshima H, Billeter MA, Griffin DE (1998) Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phe-notypes in vivo. J Virol 72:7754–7761

    PubMed  CAS  Google Scholar 

  • Valsamakis A, Auwaerter PG, Rima BK, Kaneshima H, Griffin DE (1999) Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J Virol 73:8791–8797

    PubMed  CAS  Google Scholar 

  • Valsamakis A, Kaneshima H, Griffin DE (2001) Strains of measles vaccine differ in their ability to replicate in an damage human thymus. J Infect Dis 183:498–502

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos DY, Cai XH, Oglesbee MJ (1998a) Constitutive overexpression of the major induci-ble 70 kDa heat shock protein mediates large plaque formation by measles virus. J Gen Virol 79:2239–2247

    CAS  Google Scholar 

  • Vasconcelos D, Norrby E, Oglesbee M (1998b) The cellular stress response increases measles virus-induced cytopathic effect. J Gen Virol 79:1769–1773

    CAS  Google Scholar 

  • Vidalain PO, Azocar O, Servet-Delprat C, Rabourdin-Combe C, Gerlier D, Manie S (2000) CD40 signaling in human dendritic cells is initiated within membrane rafts. EMBO J 19:3304–3313

    Article  PubMed  CAS  Google Scholar 

  • Vincent S, Spehner D, Manie S, Delorme R, Drillien R, Gerlier D (1999) Inefficient measles virus budding in murine L.CD46 fibroblasts. Virology 265:185–195

    Article  PubMed  CAS  Google Scholar 

  • Vincent S, Gerlier D, Manie SN (2000) Measles virus assembly within membrane rafts. J Virol 74:9911–9915

    Article  PubMed  CAS  Google Scholar 

  • Wardrop EA, Briedis DJ (1991) Characterization of V protein in measles virus-infected cells. J Virol 65:3421–3428

    PubMed  CAS  Google Scholar 

  • Whistler T, Bellini WJ, Rota PA (1996) Generation of defective interfering particles by two vaccine strains of measles virus. Virology 220:480–484

    Article  PubMed  CAS  Google Scholar 

  • Witko SE, Kotash C, Sidhu MS, Udem SA, Parks CL (2006) Inhibition of measles virus minirep-licon-encoded reporter gene expression by V protein. Virology 348:107–119

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Saito H, Kubota T, Yokosawa N, Amano K, Fujii N (2003) Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C, V, with interferon-alpha receptor complex. Virology 306:135–146

    Article  PubMed  CAS  Google Scholar 

  • Yokota S, Okabayashi T, Yokosawa N, Fujii N (2008) Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J 22:74–83

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Bourhis JM, Longhi S, Carsillo T, Buccellato M, Morin B, Canard B, Oglesbee M (2005) Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus.Virology 337:162–174

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gerlier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerlier, D., Valentin, H. (2009). Measles Virus Interaction with Host Cells and Impact on Innate Immunity. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70523-9_8

Download citation

Publish with us

Policies and ethics