Skip to main content

An Integrated Approach for Reconstructing a Surface Model of the Proximal Femur from Sparse Input Data and a Multi-Level Point Distribution Model

  • Conference paper
Biomedical Simulation (ISBMS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5104))

Included in the following conference series:

  • 1932 Accesses

Abstract

In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific surface model of the proximal femur from intra-operatively available sparse data, which may consist of sparse point data or a limited number of calibrated fluoroscopic images. We conducted experiments on clinical datasets as well as on datasets from cadaveric bones. Our experimental results demonstrate promising accuracy of the present approach. Further extension to reconstructing a surface model from pre-operative biplanar X-ray radiographs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Livyatan, H., Yaniv., Z., Joskowicz, Z.: Gradient-based 2-D/3-D rigid registration of fluoroscopic X-ray to CT. IEEE T. Med. Imaging 22(11), 1395–1406 (2003)

    Article  Google Scholar 

  2. Zheng, G., Rajamani, K.T., Nolte, L.-P.: Use of a dense point distribution model in a three-stage anatomical shape reconstruction from sparse information for computer assisted orthopaedic surgery: a preliminary study. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 52–60. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Zheng, G., Dong, X., Nolte, L.-P.: Robust and accurate reconstruction of patient-specific 3D surface models from sparse point sets: a sequential three-stage trimmed optimization approach. In: Yang, G.-Z., Jiang, T., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 68–75. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Zheng, G.: A novel 3D/2D correspondence building method for anatomy-based registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 75–83. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Zheng, G., et al.: Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 25–32. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley, Chichester (1998)

    MATH  Google Scholar 

  7. Kendall, D.: A survey of the statistical theory of shape. Statistical Science 4(2), 87–99 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Small, C.: The statistical Theory of Shape. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  9. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  10. Cootes, T.F., et al.: Active shape models – their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  11. Corouge, I., et al.: Interindividual functional mapping: a nonlinear local approach. Neuroimage 19, 1337–1348 (2003)

    Article  Google Scholar 

  12. Fleute, M., Lavallée, S.: Building a complete surface model from sparse data using statistical shape models: application to computer assisted knee surgery system. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 879–887. Springer, Heidelberg (1998)

    Google Scholar 

  13. Fleute, M., Lavallée, S., Julliard, R.: Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery. Medical Image Analysis 3(3), 209–222 (1999)

    Article  Google Scholar 

  14. Rajamani, K.T., Styner, M., Joshi, S.C.: Bone model morphing for enhanced surgical visualization. Proceedings of the ISBI 2004, 1255–1258 (2004)

    Google Scholar 

  15. Rajamani, K.T., et al.: A novel and stable approach to anatomical structure morphing for enhanced intraoperative 3D visualization. In: Proceedings of the SPIE Medical Imaging: Visualization, Image-guided Procedures, and Display, vol. 5744, pp. 718–725 (2005)

    Google Scholar 

  16. Fleute, M., Lavallée, S.: Nonrigid 3-D/2-D registration of images using statistical models. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 138–147. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Yao, J., Taylor, R.H.: Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model. In: Proceedings of ICCV 2003, vol. 2, pp. 1329–1334. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  18. Lamecker, H., Wenckebach, T.H., Hege, H.-C.: Atlas-based 3D-shape reconstruction from X-ray images. In: Proceedings of ICPR 2006, vol. 1, pp. 371–374 (2006)

    Google Scholar 

  19. Benameur, S., et al.: 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Computerized Medical Imaging and Graphics 27, 321–337 (2003)

    Article  Google Scholar 

  20. Benameur, S., et al.: A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Transactions on Biomedical Engineering 52(12), 2041–2057 (2005)

    Article  Google Scholar 

  21. Chan, C.S.K., Edwards, P.J., Hawkes, D.J.: Integration of ultrasound-based registration with statistical shape models for computer-assisted orthopaedic surgery. In: Proceedings of SPIE Medical Imaging 2003: Image Processing, vol. 5032, pp. 414–424 (2003)

    Google Scholar 

  22. Chan, C.S.K., Barratt, D.C., Edwards, P.J., Penney, G.P., Slomczykowski, M., Carter, T.J., Hawkes, D.J.: Cadaver validation of the use of ultrasound for 3D model instantiation of bony anatomy in image guided orthopaedic surgery. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 397–404. Springer, Heidelberg (2004)

    Google Scholar 

  23. Talib, H., Rajamani, K.T., Kowal, J., Nolte, L.-P., Styner, M., Gonzalez Ballester, M.A.: A comparison study assessing the feasibility of ultrasound-initialized deformable bone models. Computer Aided Surgery 10(5/6), 293–299 (2005)

    Article  Google Scholar 

  24. Talib, H., et al.: Feasibility of 3D ultrasound-initialized deformable bone-modeling. In: Proceedings of CAOS 2006, pp. 519–522 (2006)

    Google Scholar 

  25. Yao, J., Taylor, R.H.: Tetrahedral mesh modeling of density data for anatomical atlases and intensity-based registration. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 531–540. Springer, Berlin (2000)

    Google Scholar 

  26. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics, SIGGRAPH 1999, pp. 187–194 (1999)

    Google Scholar 

  27. Styner, M., et al.: Evaluation of 3D correspondence methods for modeling building. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 63–75. Springer, Heidelberg (2003)

    Google Scholar 

  28. Brechbuehler, C., Gerig, G., Kuebler, O.: Parameterization of Closed Surfaces for 3D Shape Description. Comput Vision and Image Under 61, 154–170 (1995)

    Article  Google Scholar 

  29. Davies, R.H., Twining, C.H., et al.: 3D statistical shape models using direct optimization of description length. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 3–20. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  30. Loop, C.T.: Smooth subdivision surfaces based on triangles. M.S. Thesis, Department of Mathematics, University of Utah (August 1987)

    Google Scholar 

  31. Besl, P., McKay, N.D.: A method for registration of 3D shapes. IEEE Transaction on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)

    Article  Google Scholar 

  32. Bookstein, F.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transaction on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  33. Moreland, J.R.: Primary Total Hip Arthroplasty. In: Chapman, M.W. (ed.) Operative Orthopaedics, 1st edn., vol. 1, pp. 679–693. J.B Lippincott, Philadelphia (1988)

    Google Scholar 

  34. Schumann, S., Zheng, G., Nolte, L.-P.: Calibration of X-ray radiographs and its feasible application for 2D/3D reconstruction of the proximal femur. IEEE EMBS (submitted, 2008)

    Google Scholar 

  35. Zheng, G., Schumann, S.: 3-D reconstruction of a surface model of the proximal femur from digital biplanar radiographs. IEEE EMBS (submitted, 2008)

    Google Scholar 

  36. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: measuring error between surface using the Hausdorff distance. In: Proceedings of the IEEE International Conference on Multimedia and Expo 2002 (ICME), vol. I, pp. 705–708 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fernando Bello P. J. Eddie Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, G., Ballester, M.A.G. (2008). An Integrated Approach for Reconstructing a Surface Model of the Proximal Femur from Sparse Input Data and a Multi-Level Point Distribution Model. In: Bello, F., Edwards, P.J.E. (eds) Biomedical Simulation. ISBMS 2008. Lecture Notes in Computer Science, vol 5104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70521-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70521-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70520-8

  • Online ISBN: 978-3-540-70521-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics