Skip to main content

Uniform Random Rational Number Generation

  • Conference paper
  • 2359 Accesses

Part of the Operations Research Proceedings book series (ORP,volume 2006)

Abstract

Classical floating point random numbers fail simple tests when considered as rational numbers.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knuth D E (1998) The art of computer programming. Vol. 2: Seminumerical algorithms. third edition, Addison-Wesley, Reading, Mass.

    Google Scholar 

  2. L’Ecuyer P (1994) Uniform random number generation. Annals of Operations Research 53:77–120

    CrossRef  Google Scholar 

  3. L’Ecuyer P (1998) Random number generation. In: Banks J (ed) Handbook on Simulation. John Wiley, Hoboken, NJ.

    Google Scholar 

  4. L’Ecuyer P (2004) Random number generation. In: Gentle J E, Härdle W, Mori Y, (eds) Handbook of computational statistics. Concepts and methods. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. L’Ecuyer P (2001) Software for uniform random number generation: Distinguishing the good and the bad. In: Proceedings of the 2001 Winter Simulation Conference. Pistacaway NJ., IEEE Press

    Google Scholar 

  6. L’Ecuyer P, Hellekalek P (1998) Random number generators: Selection criteria and testing. In: Hellekalek P (ed) Random and quasi-random point sets. Springer Lecture Notes in Statistics 138. Springer, New York

    Google Scholar 

  7. L’Ecuyer P, Simard R (2001) On the performance of birthday spacings tests with certain families of random number generators. Mathematics and Computers in Simulation 55(1–3): 131–137

    CrossRef  Google Scholar 

  8. L’Ecuyer P, Simard R, Wegenkittl S (2002) Sparse serial tests of uniformity for random number generators. SIAM Journal on Scientific Computing 24(2): 652–668

    CrossRef  Google Scholar 

  9. Maple 10 (2005) Maplesoft, a division of Waterloo Maple Inc., www.maplesoft.com

    Google Scholar 

  10. MuPAD Pro 3.1 (2005) SciFace Software GmbH& Co.KG, www.sciface.com

    Google Scholar 

  11. Morgenstern T (2006) Uniform Random Binary Floating Point Number Generation. In: Proceedings of the 2. Wernigeröder Automatisierungs-und Informatiktage. Hochschule Harz, Wernigerode

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morgenstern, T. (2007). Uniform Random Rational Number Generation. In: Waldmann, KH., Stocker, U.M. (eds) Operations Research Proceedings 2006. Operations Research Proceedings, vol 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69995-8_90

Download citation

Publish with us

Policies and ethics