Skip to main content

Understanding to Predict

  • Chapter

Abstract

Today a significant effort is being spent in some advanced countries in the world to develop reliable methods for landslide prediction and risk mitigation. The solution of such a problem requires a great experience and a deep knowledge of soil behavior. In fact, only a clear understanding of the physical and mechanical processes which lead to slope failure and of the processes which govern following movement of soil or rock masses, can help in the setting up of effective actions for risk mitigation. Based on the analysis and interpretation of documented cases, the paper reports some examples of the strict relationship which exists between soil properties or pore pressure regime, and landslide mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso EE, Gens A, Josa A (1990). A constitutive model for partially saturated soils. Géotechnique, 40(3): 405–430

    Google Scholar 

  • Banks DC, Strohm WE, De Angulo M, Lutton RJ (1975). Study of clay-shale slopes along the Panama Canal. Rep. no 3, Engineering Analysis of Slides and Strength Properties of Clay Shales along the Gaillard Cut. TRechnical Rep. S-70-9, U.S. Army Engineering Waterways Experiment Station, Vicksburg Miss

    Google Scholar 

  • Barton NR (1976). The shear strength of rock and rock joints. International Journal or Rock Mechanics and Mining Sciences & Geomechanics Abstracts, XIII: 205–279

    Google Scholar 

  • Bilotta E, Pellegrino A, Picarelli L (1985). Geotechnical properties and slope stability in structurally complex clay soils. Geotechnical Engineering in Italy. An Overview, Cap. 3: Physical and Mechanical Properties, A.G.I., pp. 195–214

    Google Scholar 

  • Bjerrum L (1967). Progressive failure of slopes of overconsolidated plastic clays. International Journal of Soil Mechanics and Engineering Division ASCE, SM5: 1–49

    Google Scholar 

  • Cairo R, Dente G (2003). A flowslide in a pyroclastic soil fill. In: Picarelli L (ed), Patron, Proc. Int. Conf. on Fast Slope Movements – Prediction and Prevention for Risk Mitigation, Napoli, 1, pp. 53–61

    Google Scholar 

  • Cicolella A, Picarelli L (1990). Decadimento meccanico di una tipica argilla a scaglie di elevata plasticità. Rivista Italiana di Geotecnica, XXIV(1): 5–23

    Google Scholar 

  • Comegna L, Picarelli L (2005). The interplay between pore pressures and slope movements in fine-grained materials. In: Barla G and M Barla (eds.), Proc. 11th Int. Conference of the Int. Ass. of Computer Methods and Advances in Geomechanics (IACMAG), Turin, 3, pp. 497–504

    Google Scholar 

  • Comegna L, Picarelli L, Urciuoli G (2007). The mechanics of mudslides as a cyclic undrained-drained process. Landslides, 4(3): 217–232

    Article  Google Scholar 

  • Corominas J, Moya J, Ledesma A, Lloret A, Gili JA (2005). Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides, 2(2): 83–96

    Article  Google Scholar 

  • Di Maio C (1996a). Exposure of bentonite to salt solution: osmotic and mechanical effects. Géotechnique, 46(4): 695–707

    Google Scholar 

  • Di Maio C (1996b). The influence of pore fluid composition on the residual shear strength of some natural clayey soils. In: Senneset K (ed.), Balkema, Proc. 7th Int. Symp. on Landslides, Trondheim, 2, pp. 1189–1194

    Google Scholar 

  • Di Maio C, Onorati R (2000). Influence of pore liquid composition on the shear strength of an active clay. In: Bromhead E, N. Dixon and M.L. Ibsen (eds.), Proc. 8th Int. Symp. on Landslides, Cardiff, 1: 463–468

    Google Scholar 

  • Di Nocera S, Fenelli GB, Iaccarino G, Pellegrino A, Picarelli L, Urciuoli G (1995). An example of the geotechnical implications of geological history. Proc. 11th European Conf. on Soil Mechanics and Foundation Engineering, Copenhagen, 8, pp. 39–48

    Google Scholar 

  • Henkel DJ (1967). Local geology and the stability of natural slopes. Journal of the Soil Mechnics and Engineering Division, ASCE, 437–450

    Google Scholar 

  • Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001). A review of the classification of landslides of flow type. Environmental & Engineering Geoscience, 7(3): 1–18

    Google Scholar 

  • Iverson RM (1997). The physics of debris flows. Review of Geophysics, 35(3): 245–296

    Article  Google Scholar 

  • Kenney TC, Lau KC (1984). Temporal changes of groundwater pressure in a natural slope of non fissured clay. Canadian Geotechnical Journal, 21: 138–146

    Google Scholar 

  • Lade PV, Pradel V (1990). Instability and plastic flow of soils. Experimental observations. Journal of the Geotechnical Engineering Division, ASCE, 116(11): 2532–2550

    Article  Google Scholar 

  • Lampitiello S (2004). Resistenza non drenata e suscettività alla liquefazione di ceneri vulcaniche della Regione Campania. PhD Thesis, Seconda Università di Napoli

    Google Scholar 

  • Leroueil S, Vaughan PR (1990). The congruent and general effects of structure of natural soils and weak rocks. Géotechnique, 40: 467–488

    Google Scholar 

  • Leroueil S, Vaunat J, Picarelli L, Locat J, Homa L, Faure RM (1996). Geotechnical characterization of slope movements. In: Senneset K (ed.), Balkema, Proc. 7th Int. Symp. on Landslides, Trondheim, 1, pp. 53–74

    Google Scholar 

  • Lo Presti D, Frojo F (2004). Resistenza al taglio residua di rocce tenere e terreni a grana fine. Rivista Italiana di Geotecnica, 38(3): 48–84

    Google Scholar 

  • Moriwaki H, Inokuchi T, Hattanji T, Sassa K, Ochiai H, Wang G (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1(4): 277–288

    Google Scholar 

  • Musso A, Olivares L (2004). Post-failure evolution in flow-slide: transition from static liquefaction to fluidization. In: Picarelli L (ed.), Patron, Proc. Int. Workshop on Occurrence and Mechanisms of Flow-Like Landslides in Natural Slopes and Earthfills, Sorrento, pp. 117–128

    Google Scholar 

  • Neuzil CE (1993). Low fluid pressure within the Pierre shale: a transient response to erosion. Water Resources Research, 29(7): 2007–2020

    Article  Google Scholar 

  • Nova R (1992). Mathematical modelling of natural and engineered geomaterials. European Journal of Mechanical, A/Solids, 11(Special Issue), 1st ECSM, 135–154

    Google Scholar 

  • Ochiai H, Okada Y, Furuya G, Okura Y, Matsui T, Sammori T, Terajima T, Sassa K (2004). A fluidized landslide on a natural slope by artificial rainfall. Landslides, 1(3): 211–220

    Article  Google Scholar 

  • Olivares L (1998). A stress-path controlled traxial apparatus equipped for local measurements of displacements and pore pressures. In: Evangelista A and L Picarelli (eds.), Balkema, Proc. Second Int. Symp. on The Geotechnics of Hard Soils-Soft Rocks. Napoli, 3, pp. 1435–1438

    Google Scholar 

  • Olivares L and Damiano E (2007). Post-failure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(19): 51–62

    Article  Google Scholar 

  • Olivares L, Picarelli L (1999). Discussion on “A laboratory study of the strength of four stiff clays” by JB BUrland, S Rampello, VN Georgiannou and G Calabresi, Géotechnique 46(3): 491–514

    Google Scholar 

  • Olivares L, Picarelli L (2006).Modelling of flowslides behaviour for risk mitigation. Proc. Int. Conf. on Physical Modelling in Geotechnics, Hong Kong, 1, pp. 99–113

    Google Scholar 

  • Pellegrino A, Picarelli L, Urciuoli G (2004). Experiences of mudslides in Italy. In: Picarelli L (ed.), Patron, Proc. Int. Workshop on Mechanisms and Occurrence of Flow-Like Landslides in Natural Slopes and Earthfills, Sorrento, pp. 191–206

    Google Scholar 

  • Picarelli L (1980). Sulla resistenza residua di argille varicolori dell’Italia meridionale. Proc. 4th National Geotechnical Conf., Firenze, II, pp. 301–309

    Google Scholar 

  • Picarelli L (1986). Caratterizzazione geotecnica dei terreni strutturalmente complessi nei problemi di stabilità dei pendii. Proc. 6th National Geotechnical Conf., Bologna, 3, pp. 155–169

    Google Scholar 

  • Picarelli L (2000). Mechanisms and rates of slope movements in fine grained soils. Proc. GeoEng2000, Int. Conf. on Geotechnical and Geological Engineering, Melbourne, 1, pp. 1618–1670

    Google Scholar 

  • Picarelli L (2005). Discussion on “Resistenza al taglio residua di rocce tenere e terreni a grana fine” by Lo Presti D and F. Frojo, Rivista Italiana di Geotecnica, 39(2): 63–67

    Google Scholar 

  • Picarelli L (2007). Considerations about the mechanics of slow active landslides in clay. In: Sassa K, H. Fukuoka, F. Wang and G. Wang (eds.), Progress in Landslide Science, Springer Heidelberg, pp. 27–45

    Google Scholar 

  • Picarelli L, Di Maio C, Olivares L, Urciuoli G (1998). Properties and behaviour of tectonised clay shales in Italy. In: Evangelista A and L Picarelli (eds.), Balkema, Proc. Second Int. Symp. on The Geotechnics of Hard Soils-Soft Rocks, Napoli, 3, pp. 1211–1241

    Google Scholar 

  • Picarelli L, Evangelista A, Rolandi G, Paone A, Nicotera MV, Olivares L, Scotto di Santolo A, Lampitiello S, Rolandi M (2006). Mechanical properties of pyroclastic soils in Campania Region. In: Tan TS, KK Phoon, DW Hight, S Leroueil (eds.), Balkema, Proc. 2nd Int. Workshop on Characterisation and Engineering Properties of Natural Soils, Singapore, 4, pp. 2331–2384

    Google Scholar 

  • Picarelli L, Olivares L, Avolio B (2008b). Zoning for flowslide and debris flow in pyroclastic soils of Campania Region based on ‘infinite slope’ analyis. Accepted for publication in Engineering Geology

    Google Scholar 

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008c). Mechanical aspects of flow-like movements in granular and fine-grained soils. Rock Mechanics and Rock Engineering, 41(1): 179–197

    Article  Google Scholar 

  • Picarelli L, Olivares L, Di Maio C, Silvestri F, Di Nocera S, Urciuoli G (2002). Structure, properties and mechanical behaviour of the highly plastic intensely fissured Bisaccia clay shale. In: Tan TS, KK Phoon, DW Hight, S Leroueil (eds.), Balkema, Proc. Int. Workshop on Characterisation and Engineering Properties of Natural Soils, Singapore, 2, pp. 947–982

    Google Scholar 

  • Picarelli L, Russo C, Mandolini A (1999). Long-term movements on an earthflow in tectonised clay shales. In: Yagi N, T. Yamagami and JC Jiang (eds.), Balkema, Proc. Int. Symp. on Slope Stability Engineering, Matsuyama, 2, pp. 1151–1158

    Google Scholar 

  • Picarelli L, Urciuoli G (1993). Effetti dell’erosione in argilliti di alta plasticità. Rivista Italiana di Geotecnica, 17: 29–47

    Google Scholar 

  • Picarelli L, Urciuoli G, Mandolini A., Ramondini M. (2006). Softening and instability of natural slopes in highly fissured tectonized clay shales. Natural Hazards and Earth System Sciences, 6(4): 529–539

    Google Scholar 

  • Picarelli L, Urciuoli G, Russo C (2004). The role of groundwater regime on behaviour of clayey slopes. Canadian Geotechnical Journal, 41: 467–484

    Article  Google Scholar 

  • Picarelli L, Versace P, de Riso R, Palmieri M (2008a). Landslide disaster management in Italy. Proc. 2007 Int. Forum on Landslide Disaster Management, Hong Kong, in press

    Google Scholar 

  • Picarelli L, Viggiani C. (1988). A landslide in a structurally complex formation. In: Bonnard C (ed.), Proc. 5th Int. Symp. on Landslides, Lausanne, 1, pp. 289–297

    Google Scholar 

  • Potts DM, Kovacevic N, Vaughan PR (1997). Delayed collapse of cut slopes in stiff clay. Géotechnique, 47: 953–982

    Article  Google Scholar 

  • Sassa K (2000). Mechanism of flows in granular soils. Proc. GeoEng2000, Int. Conf. on Geotechnical and Geological Engineering, Melbourne, 1, pp. 1671–1702

    Google Scholar 

  • Schofield AN, Wroth CP (1968). Critical State Soil Mechanics. Mc-Graw-Hill Book Co., London

    Google Scholar 

  • Skempton AW (1977). Slope stability of cuttings in brown London Clays. Proc. IX Int. Conf. on Soil Mechanics and Foundation Engineering, Tokyo, 3, pp. 261–270

    Google Scholar 

  • Skempton AW (1985). Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique, 35(1): 3–18

    Article  Google Scholar 

  • Sladen JA, D’Hollander RD, Krahn J, Mitchell DE (1985). Back-analysis of the Nerlerk berm liquefaction slides. Canadian Geotechnical Journal, 22: 564–578

    Article  Google Scholar 

  • Terzaghi K (1936). Stability of slopes in natural clay. Proc. 1st Int. Conf. Soil Mechanics, Harvard, pp. 161–165

    Google Scholar 

  • Yamamuro JA, Lade PV (1997). Static liquefaction of very loose sands. Canadian Geotechnical Journal, 34: 905–917

    Article  Google Scholar 

  • Wang G, Sassa K (2001). Factors affecting rainfall-induced landslides in laboratory flume tests. Géotechnique 51(7): 587–600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Picarelli, L. (2009). Understanding to Predict. In: Sassa, K., Canuti, P. (eds) Landslides – Disaster Risk Reduction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_4

Download citation

Publish with us

Policies and ethics