Skip to main content

Fundamental Continuous Models

  • Chapter

Part of the book series: Springer Series in Soviet Mathematics ((CLASSICS))

Abstract

We shall give a complete list of results pertaining to two fundamental continuous models, the HM and SG models. For the rapidly decreasing boundary conditions we shall analyze the mapping F from the initial data of the auxiliary linear problem to the transition coefficients and the discrete spectrum, and show how to solve the inverse problem, i. e. how to construct the mapping F−1. We shall see that these models allow an r-matrix approach, which will enable us to show that F is a canonical transformation to variables of action-angle type. It will thus be proved that the HM and SG models are completely integrable Hamiltonian systems. We shall also present a Hamiltonian interpretation of the change to light-cone coordinates in the SG model. To conclude this chapter, we shall explain that in some sense the LL model is the most universal integrable system with two-dimensional auxiliary space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkadiev, V. A.: Application of the inverse scattering method to singular solutions of nonlinear equations. III. Teor. Mat. Fiz. 58,38–49 (1984) [Russian]

    Google Scholar 

  2. Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262–1264 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Alonso Martinez, L.: Group-theoretical analysis of the Sine-Gordon equa- tion as a relativistic dynamical system. J. Math. Phys. 24, 982–989 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. II. Teor. Mat. Fiz. 54, 23–37 (1983)

    Article  Google Scholar 

  5. ; English transl. in Theor. Math. Phys. 53, 151–162 (1982), 54,12–32 (1983)

    Google Scholar 

  6. Bobenko, A. I.: The Landau-Lifshitz equation. Dressing up of the solutions and elementary excitations. In: Differential geometry, Lie groups and mechanics. V. Zap. Nauchn. Semin. LOMI 123,58–66 (1983) [Russian]

    Google Scholar 

  7. B 1985] Bobenko, A. I.: Real algebraic-geometric solutions of the Landau-Lifshitz equation in terms of Prym theta-functions. Funk. Anal. Priloi. 19 (1), 6–19 (1985) [Russian]

    Google Scholar 

  8. Bikbaev, R. F., Bobenko, A. I.: On finite-gap integration of the Landau-Lifshitz equation. XYZ case. Preprint LOMI E-8–83. Leningrad, 1983

    Google Scholar 

  9. Bikbaev, R. F., Bobenko, A. I., Its, A. R.: Finite-gap integration of the Landau-Lifshitz equation. Dokl. Akad. Nauk SSSR 272, 1293–1298 (1983)

    MathSciNet  MATH  Google Scholar 

  10. English transi. in Sov. Math. Dokl. 28, 512–516 (1983)

    Google Scholar 

  11. Bikbaev, R. F., Bobenko, A. I., Its, A. R.: The Landau-Lifshitz equation. The theory of exact solutions. (Part I, II). Preprints Don PTI-4–6(81), Don PTI-4–7(82), Donetsk 1984 [Russian]

    Google Scholar 

  12. Belokolos, E. D., Enolsky, V. Z.: Solution in elliptic functions of the nonlinear partial differential equations integrable by the inverse scattering method. Usp. Mat. Nauk 37 (4), 89 (1982) [Russian]

    Google Scholar 

  13. Borisov, A. B.: Multisoliton solutions of the nonisotropic magnet equations. Fizika Materialov i Metallovedenie 55 (2), 230–234 (1983) [Russian]

    Google Scholar 

  14. Borovik, A. E., Robuk, V. N.: Linear pseudopotentials and conservation laws for the Landau-Lifshitz equation describing the nonlinear dynamics of a ferromagnet with uniaxial anisotropy. Teor. Mat. Fiz. 46, 371–381 (1981)

    Article  Google Scholar 

  15. Russian]; English transl. in Theor. Math. Phys. 46, 242–248 (1981)

    Google Scholar 

  16. Budagov, A. S.: A completely integrable model of classical field theory with nontrivial particle interaction in two space-time dimensions. In: Problems in quantum field theory and statistical physics. I. Zap. Nauchn. Semin. LOMI 77, 24–56 (1978)[Russian]

    Google Scholar 

  17. Cherednik, I. V.: Reality conditions in finite-gap integration. Dokl. Akad.

    Google Scholar 

  18. Nauk SSR 252,1104–1108 (1980) [Russian]; English transl. in Soy. Phys. Dokl. 25,450–452 (1980)

    Google Scholar 

  19. Cherednik, I. V.: Integrable differential equations and coverings of elliptic curves. Izv. Akad. Nauk SSSR, Ser. Mat. 47, 384–406 (1983)

    MathSciNet  Google Scholar 

  20. Russian]; English transl. in Math. USSR - Izv. 22, 357–377 (1984)

    Google Scholar 

  21. Dubrovin, B. A.: Matrix finite-gap operators. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 23,33–78 Moscow, VINITI 1983 [Russian]

    Google Scholar 

  22. Date, E., Jimbo, M., Kashiwara, M.: Landau-Lifshitz equation: solitons, quasi-periodic solutions and infinite dimensional Lie algebras. J. Phys. A 16, 221–236 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Dubrovin, B. A., Natanson, S. M.: Real two-gap solutions of the sineGordon equation. Funk. Anal. Priloz. 16 (1), 27–43 (1982)[Russian]; English transl. in Funct. Anal. Appl. 16, 21–33 (1982)

    Google Scholar 

  24. Fogedby, H. C.: Solitons and magnons in the classical Heisenberg chain. J. Phys. A 13, 1467–1499 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gerdjikov, V. S., Yanovski, A. B.: Gauge covariant formulation of the generating operator. 1. The Zakharov-Shabat system. Phys. Lett. 103A, 232236 (1984)

    Google Scholar 

  26. Its, A. R.: Finite-gap solutions of the sine-Gordon equation. For an exposition see Matveev V. B.: Abelian functions and solutions. Preprint No 373, Inst. Fiz. Teor. Univ. Wroclaw (1976)

    Google Scholar 

  27. Its, A. R., Petrov, V. E.: “Isomonodromic” solutions of the sine-Gordon equation and the long time asymptotics of its rapidly decaying solutions. Dokl. Akad. Nauk SSSR 265, 1302–1306 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Russian]; English transl. in Soy. Math. Dokl. 26, 244–247 (1983)

    Google Scholar 

  29. Krichever, I. M.: Methods of algebraic geometry in the theory of nonlinear equations. Usp. Mat. Nauk 32 (6), 183–208 (1977)

    MathSciNet  MATH  Google Scholar 

  30. Russian]; English transi. in Russian Math. Surveys 32 (6), 185–213 (1977)

    Google Scholar 

  31. Krichever, I. M.: Nonlinear equations and elliptic curves. Itogi Nauki Tekh., Ser. Sovrem. Probl. Math. 23,79–136 Moscow, VINITI 1983 [Russian]

    Google Scholar 

  32. Kaup, D.: The squared eigenstates of the sine-Gordon eigenvalue problem. J. Math. Phys. 25, 2467–2471 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kosel, V. A., Kotlyarov, V. P.: Almost-periodic solutions of the equations u„-u„„+ sin u=0. Dokl. Akad. Nauk. Ukr. SSR, Ser. A. 10,878–881 (1976) [Russian]

    Google Scholar 

  34. Kaup, D. J., Newell, A. C.: The Goursat and Cauchy problems for the Sine-Gordon equation. SIAM J. Appl. Math. 34, 37–54 (1978)

    MathSciNet  MATH  Google Scholar 

  35. Kulish, P. P., Reyman, A. G.: A hierarchy of symplectic forms for the Schrödinger and the Dirac equations on the line. In: Problems in quantum field theory and statistical physics. I. Zapiski Nauchn. Semin. LOMI 77, 134–147 (1978)

    Google Scholar 

  36. Russian]; English transl. in J. Sov. Math. 22, 1627–1637 (1983)

    Google Scholar 

  37. Kulish, P. P., Sklyanin, E. K.: Solutions of the Yang-Baxter equation. In: Differential geometry, Lie groups and mechanics. III. Zapiski Nauchn. Semin. LOMI 95, 129–160 (1980)

    Google Scholar 

  38. Russian]; English transl. in J. Soy. Math. 19 (5) 1596–1620 (1982)

    Google Scholar 

  39. Kulish, P. P.: Factorization of the classical and quantum S-matrix and conservation laws. Teor. Mat. Fiz. 26, 198–205 (1976)

    Article  MathSciNet  Google Scholar 

  40. Russian]; English transi. in Theor. Math. Phys. 26, 132–137 (1976)

    Google Scholar 

  41. Kulish, P. P.: Scattering of solitons with internal degrees of freedom. In: Problems in high energy physics and quantum field theory. II International seminar, Protvino, 463–470 (1979)

    Google Scholar 

  42. Kulish, P. P.: Quantum difference nonlinear Schrödinger equation. Lett. Math. Phys. 5, 191–197 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kulish, P. P.: Action-angle variables for the multi-component nonlinear Schrödinger equation. In: Boundary value problems of mathematical physics and related topics of function theory. 14. Zap. Nauchn. Semin. LOMI 115,126–136 (1982) [Russian]

    Google Scholar 

  44. Manakov, S. V.: On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. Zh. Exp. Teor. Fiz. 65, 506–516 (1973)

    ADS  Google Scholar 

  45. Russian]; English transl. in Sov. Phys. JETP 38, 248–253 (1974)

    Google Scholar 

  46. Manakov, S. V.: Example of a completely integrable nonlinear wave field with nontrivial dynamics (Lee model).Teor. Mat. Fiz. 28, 172–179 (1976)

    Google Scholar 

  47. Russian]; English transi. in Theor. Math. Phys. 28, 709–714 (1976)

    Google Scholar 

  48. Magri, F.: A simple model of the integrable Hamiltonian equation. J. Math. Phys. 19, 1156–1162 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Mikhailov, A. V.: The Landau-Lifshitz equation and the Riemann boundary problem on a torus. Phys. Lett. 92A, 51–55 (1982)

    Article  MathSciNet  Google Scholar 

  50. Novikov, S. P.: Algebraic-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the sine-Gordon equation. In: Differential geometry, Lie groups and mechanics. VI. Zapiski Nauchn. Semin. LOMI 133,177–196 (1984) [Russian]

    Google Scholar 

  51. Novokshenov, V. Yu.: Asymptotics as co of the solution of the Cauchy problem for the two-dimensional generalization of the Toda lattice. Izv. Akad. Nauk SSSR, Ser. Mat. 48,372–410 (1984) [Russian]

    Google Scholar 

  52. Pogrebkov, A. K., Polivanov, M, K.: Singular solutions of the Liouville and Sinh-Gordon equations. Sov. Sci. Rev., Ser. C. Review in Math. Physics 5, 120–169 (1985)

    Google Scholar 

  53. Rodin, Yu. L.: The Riemann boundary problem on Riemann surfaces and the inverse scattering problem for the Landau-Lifshitz equation. Physica D11, 90–108 (1984)

    MathSciNet  MATH  Google Scholar 

  54. Sklyanin, E. K.: On complete integrability of the Landau-Lifshitz equation. Preprint LOMI E-3–79, Leningrad, 1979

    Google Scholar 

  55. Takhtajan, L. A.: Exact theory of propagation of ultra-short optical pulses in two-level media. Zh. Exp. Teor. Fiz. 66,476–489 (1974) [Russian]

    Google Scholar 

  56. Takhtajan, L. A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. 64A, 235–237 (1977)

    Article  MathSciNet  Google Scholar 

  57. Takhtajan, L. A., Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. Teor. Mat. Fiz. 21 (2), 160–174 (1974) Russian]; English transi. in Theor. Math. Phys. 21, 1046–1057 (1974)

    Google Scholar 

  58. Takhtajan, L. A., Faddeev, L. D.: Essentially nonlinear one-dimensional model of classical field theory. (Addition). Teor. Mat. Fiz. 22, 143 (1975) Russian]; English transi. in Theor. Math. Phys. 22, 100 (1975)

    Google Scholar 

  59. Takhtajan, L. A., Faddeev, L. D.: The Hamiltonian system connected with the equation u g „+ sin u=0. Trudy. Mat. Inst. Steklov 142, 254–266 (1976)

    MathSciNet  Google Scholar 

  60. Russian]; English transi. in Proc. Steklov Inst. Math. 3, 277–289 (1979)

    Google Scholar 

  61. Tsiplyaev, S. A.: Commutation relations of the transition matrix in the classical and quantum inverse scattering methods. (The local case).Teor. Mat. Fiz. 48, 24–33 (1981)

    Google Scholar 

  62. Russian]; English transi. in Theor. Math. Phys. 48, 580–586 (1982)

    Google Scholar 

  63. Veselov, A. P.: The Landau-Lifshitz equation and integrable systems of classical mechanics. Dokl. Akad. Nauk SSSR 270, 1094–1097 ( 1983

    MathSciNet  Google Scholar 

  64. Russian]; English transi. in Sov. Phys. Dokl. 28, 458–459 (1983)

    Google Scholar 

  65. Vladimirov, V. S., Volovich, I. V.: Local and nonlocal currents for nonlinear equations. Teor. Mat. Fiz. 62,3–29 (1985) [Russian]

    Google Scholar 

  66. Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. Cambridge, University Press 1927

    MATH  Google Scholar 

  67. Zakharov, V. E., Faddeev, L. D.: Korteweg-de Vries equation, a completely integrable Hamiltonian system. Funk. Anal. Priloi. 5 (4), 18–27 (1971)

    MATH  Google Scholar 

  68. Russian]; English transi. in Funct. Anal. Appl. 5, 280–287 (1971)

    Google Scholar 

  69. Zakharov, V. E., Manakov, S. V.: The theory of resonant interaction of wave packets in nonlinear media. Zh. Eksp. Teor. Fiz. 69, 1654–1673 (1975)

    Google Scholar 

  70. Russian]; English transl. in Soviet Phys. JETP 42, 842–850 (1976)

    Google Scholar 

  71. Zakharov, V. E., Takhtajan, L. A.: Equivalence of the nonlinear Schrödinger equation and the Heisenberg ferromagnet equation. Teoret. Mat. Fiz. 38 (1), 26–35 (1979)

    Google Scholar 

  72. Russian]; English trans!. in Theor. Math. Phys. 38, 17–23 (1979)

    Google Scholar 

  73. Zakharov, V. E., Takhtajan, L. A., Faddeev, L. D.: A complete description of the solution of the sine-Gordon equation. Dokl. Akad. Nauk SSSR 219, 1334–1337 (1974)

    MathSciNet  Google Scholar 

  74. Zakharov, V. E., Takhtajan, L. A., Faddeev, L. D.: English transi. in Sov. Phys. Dokl. 19, 824–826 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Š 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faddeev, L.D., Takhtajan, L.A. (2007). Fundamental Continuous Models. In: Hamiltonian Methods in the Theory of Solitons. Springer Series in Soviet Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69969-9_6

Download citation

Publish with us

Policies and ethics