Skip to main content

Basic Examples and Their General Properties

  • Chapter
  • 2408 Accesses

Part of the book series: Springer Series in Soviet Mathematics ((CLASSICS))

Abstract

In this chapter we shall give a list of typical examples and establish their general properties: the zero curvature representation and the Hamiltonian formulation. Then, motivated by these examples, we shall outline a general scheme for constructing integrable equations and their solutions based on the matrix Riemann problem. A detailed study of the most important models and the Hamiltonian interpretation of the general scheme will be presented in the following chapters. The examples to be considered fall into two classes: dynamical systems generated by partial differential evolution equations (continuous models), and evolution systems of difference type (lattice models).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. F.: Lectures on Lie groups. New York-Amsterdam, Benjamin 1969

    Google Scholar 

  2. Arnold, V. I.: Mathematical Methods of Classical Mechanics. Moscow: Nauka 1974 [Russian]; English transi.: Graduate Texts in Mathematics 60, New York-Berlin-Heidelberg, Springer 1978

    Google Scholar 

  3. Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Method for solving the Sine-Gordon equation. Phys. Rev. Lett. 30, 1262 - 1264 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: The inverse scattering transform - Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249 - 315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ablowitz, M. J., Ladik, J. F.: Nonlinear differential-difference equations and Fourier analysis. J. Math. Phys. 17, 1011 - 1018 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras and curves. Adv. Math. 38, 267 - 317 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ablowitz, M. J., van Yaakov, D., Fokas, A. S.: On the inverse scattering transform for Kadomtsev-Petviashvili equation. Stud. Appl. Math. 69, 135 - 143 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. B 1984] Bogoyavlensky, O. I.: Integrable equations on Lie algebras arising in problems of mathematical physics. Izv. Akad. Nauk SSSR Ser. Mat. 48, 883938 (1984) [Russian]

    Google Scholar 

  9. Buslaev, V. S., Faddeev, L. D., Takhtajan, L. A.: Scattering theory for the Korteweg-de Vries equation and its Hamiltonian interpretation. Physica D 18, 255 - 266 (1986)

    MATH  Google Scholar 

  10. Russian]; English transl. in Theor. Math. Phys. 46, 242 - 248 (1981)

    Google Scholar 

  11. Borovik, A. E., Robuk, V. N.: Linear pseudopotentials and conservation laws for the Landau-Lifshitz equation describing the nonlinear dynamics of a ferromagnet with uniaxial anisotropy. Teor. Mat. Fiz. 46, 371-381 (1981) BT 1977] Budagov, A. S., Takhtajan, L. A.: A nonlinear one-dimensional model of classical field theory with internal degrees of freedom. Dokl. Akad. Nauk SSSR 235,805-808 (1977) [Russian]

    Google Scholar 

  12. Bu 1978] Budagov, A. S.: A completely integrable model of classical field theory with nontrivial particle interaction in two space-time dimensions. In: Problems in quantum field theory and statistical physics. I. Zap. Nauchn. Semin. LOMI 77, 24-56 (1978) [Russian]

    Google Scholar 

  13. Cherednik, I. V.: Local conservation laws for principal chiral fields (d= 1). Teor. Mat. Fiz. 38, 179-185 (1979) Russian]; English trans]. in Theor. Math. Phys. 38, 120 - 124 (1979)

    Google Scholar 

  14. Russian]; English transi. in Theor. Math. Phys. 41, 997 - 1002 (1980)

    Google Scholar 

  15. Cherednik, I. V.: Conservation laws and elements of scattering theory for principal chiral fields (d= 1). Teor. Mat. Fiz. 41, 236-244 (1979)C 1981] Cherednik, I. V.: Algebraic aspects of two-dimensional chiral fields. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 17, 175-218 (1981) [Russian]

    Google Scholar 

  16. C 1983] Cherednik, I. V.: On the definition of a-function for generalized affine Lie algebras. Funk. Anal. Priloz. 17 (3), 93-95 (1983) [Russian]

    Google Scholar 

  17. Druma, V. S.: Solution of the two-dimensional Korteweg-de Vries (KdV) equation. Pisma Zh. Exp. Teor. Fiz. 19, 753-755 (1974) Russian]; English transi. in Sov. Phys. JETP Letters 19, 387 - 388 (1974)

    Google Scholar 

  18. Dodd, R. K., Bullough, R. K.: Polynomial conserved densities for the Sine-Gordon equations. Proc. Roy. Soc. (London) A352, 481 - 503 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  19. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III. J. Phys. Soc. Japan 50, 3806 - 3812 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Date, E., Kashiwara, M., Miwa, T.: Vertex operators and r-functions. Transformation groups for soliton equations. II. Proc. Japan Acad. 57A, 387 - 392 (1981)

    Article  MATH  Google Scholar 

  21. Dubrovin, B. A., Novikov, S. P., Fomenko, A. T.: Modern Geometry. Methods and Applications. Moscow: Nauka 1979 [Russian]; English translation of Part I: Graduate Texts in Mathematics 93; Part II: Graduate Texts in Mathematics 104, New York-Berlin-Heidelberg-Tokyo, Springer 1984, 1985

    Google Scholar 

  22. Drinfeld, V. G., Sokolov, V. V.: Equations of Korteweg-de Vries type and simple Lie algebras. Dokl. Akad. Nauk SSSR 258, 11-16 (1981) Russian]; English transi. in Sov. Math. Dokl. 23, 457 - 461 (1981)

    Google Scholar 

  23. DS 1984] Drinfeld, V. G., Sokolov, V. V.: Lie algebras and equations of Korteweg-de Vries type. Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 24,81-180, Moscow, VINITI 1984 [Russian]

    Google Scholar 

  24. Flaschka, H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B9, 1924 - 1925 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Flaschka, H.: On the Toda lattice. II. Inverse scattering solution. Prog. Theor. Phys. 51, 703 - 716 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. equation. Stud. Appl. Math. 69, 211 - 228 (1983)

    Google Scholar 

  27. Frenkel, I. B., Kac, V. G.: Basic representation of affine Lie algebras and dual resonance models. Invent. Math. 62, 23 - 66 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Fordy, A. P., Kulish, P. P.: Nonlinear Schrödinger equations and simple Lie algebras. Comm. Math. Phys. 89, 427 - 443 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. FT 1985] Faddeev, L. D., Takhtajan, L. A.: Poisson structure for the KdV equation. Lett. Math. Phys. 10, 183 - 188 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  30. Gardner, C. S.: Korteweg-de Vries equation and generalizations. IV. The Korteweg-de Vries equation as a Hamiltonian system. J. Math. Phys. 12, 1548 - 1551 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Russian]; English transi. in Russian Math. Surveys 30 (5), 77 - 113 (1975)

    Google Scholar 

  32. Russian]; English transi, in Funct. Anal. Appl. 11, 93 - 104 (1977)

    Google Scholar 

  33. Gelfand, I. M., Graev, M. I., Piatetski-Shapiro, I. I.: Representation theory and automorphic functions. Moscow, Nauka 1966 [Russian]; English transi.: Philadelphia, Saunders 1969

    Google Scholar 

  34. Gerdjikov, V. S., Ivanov, M. I., Kulish, P. P.: Expansions over the “squared” solutions and difference evolution equations. J. Math-Phys. 25, 25 - 34 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. IK 1981] Izergin, A. G., Korepin, V. E.: A lattice model associated with the nonlinear Schrödinger equation. Dokl. Akad. Nauk SSSR 259,76-79 (1981) [Russian]

    Google Scholar 

  36. Russian]; English transi. in Sov. Math. Dokl. 22, 79 - 84 (1981)

    Google Scholar 

  37. K 1983] Krichever, I. M.: Nonlinear equations and elliptic curves. Itogi Nauki Teich., Ser. Sovrem. Probl. Math. 23,79-136, Moscow, VINITI 1983 [Russian]

    Google Scholar 

  38. Kako, F., Mugibayashi, N.: Complete integrability of general nonlinear differential-difference equations solvable by the inverse method. II. Prog. Theor. Phys. 61, 776 - 790 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Russian]; English transi. in Funct. Anal. Appl. 12, 276 - 286 (1978)

    Google Scholar 

  40. KR 1983] Kulish, P. P., Reyman, A. G.: Hamiltonian structure of polynomial bundles. In: Differential geometry, Lie groups and mechanics. V. Zap. Nauchn. Semin. LOMI 123,67-76 (1983) [Russian]

    Google Scholar 

  41. L 1968] Lax, P. D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure and Appl. Math. 21,467-490 (1968)

    Google Scholar 

  42. L 1977] Lakshmanan, M.: Continuum spin system as an exactly solvable dynamical system. Phys. Lett. 61A, 53-54 (1977)

    Google Scholar 

  43. Leznov, A. N., Saveliev, M. A.: Representation of zero curvature for the system of nonlinear partial differential equations xrsz=(expkx),. and its integrability. Lett. Math. Phys. 3, 489 - 494 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M 1973] Manakov, S. V.: On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. Zh. Exp. Teor. Fiz. 65,505-516 (1973) [Russian]; English transi. in Sov. Phys. JETP 38, 248-253 (1974)

    Google Scholar 

  45. Russian]; English transi. in Soy. Phys. JETP 40, 269 - 274 (1975)

    Google Scholar 

  46. Russian]; English trans[. in Funct. Anal. Appl. 10, 328 - 329 (1976)

    Google Scholar 

  47. Manakov, S. V.: The inverse scattering transform for the time-dependent Schrödinger equation and Kadomtsev-Petviashvili equation. Physica D3, 420 - 427 (1981)

    MathSciNet  MATH  Google Scholar 

  48. Russian]; English transi. in Math. USSR, Izv. 12, 371 - 389 (1978)

    Google Scholar 

  49. Russian]; English trans]. in Sov. Phys. JETP Letters 30, 414 - 418 (1979)

    Google Scholar 

  50. Mi 1981] Mikhailov, A. V.: The reduction problem and the inverse scattering method. Physica D3, 73-107 (1981)

    Google Scholar 

  51. Mikhailov, A. V., Olshanetsky, M. A., Perelomov, A. M.: Two-dimensional generalized Toda lattice. Comm. Math. Phys. 79, 473 - 488 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  52. 54-66 (1974) [Russian]; English transi. in Funct. Anal. Appl. 8, 236 - 246 (1974)

    Google Scholar 

  53. Russian]; English transi. in Russian Math. Surveys 37 (5), 1 - 56 (1982)

    Google Scholar 

  54. Novikov, S. P.: Hamiltonian formalism and variational-topological methods for finding periodic trajectories of conservative dynamical systems. Soviet Scientific Reviews, Sect. C, Math. Physics Reviews 3, 3 - 51 (1982)

    Google Scholar 

  55. Newell, A. C.: The general structure of integrable evolution equations. Proc. Royal Soc. (London) A365, 283 - 311 (1979)

    MATH  Google Scholar 

  56. Pohlmeyer, K.: Integrable Hamiltonian systems and interaction through quadratic constraints. Comm. Math. Phys. 46, 207 - 223 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Russian]; English transi. in Funct. Anal. Appl. 15, 144 - 146 (1981)

    Google Scholar 

  58. Reyman, A. G.: Integrable Hamiltonian systems connected with graded Lie algebras. In: Differential geometry, Lie groups and mechanics. III. Zap. Nauchn. Semin. LOMI 95, 3-54 (1980) [Russian]; English transi. in J. Soy. Math. 19, 1507 - 1545 (1982)

    Google Scholar 

  59. R 1983] Reyman, A. G.: A unified Hamiltonian system on polynomial bundles and the structure of stationary problems. In: Problems in quantum field theory and statistical physics. 4. Zap. Nauchn. Semin. LOMI 131, 118-127 (1983) [Russian]

    Google Scholar 

  60. Ramadas, T. R: The Wess-Zumino term and fermionic solutions. Comm. Math. Phys. 93, 355 - 365 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Reyman, A. G., Semenov-Tian-Shansky, M. A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. I. Inventiones math. 54, 81 - 100 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Russian]; English trans!. in Soy. Math. Dokl. 21, 630 - 634 (1980)

    Google Scholar 

  63. Russian]; English transl. in Soy. Math. Dokl. 20, 811 - 814 (1979)

    Google Scholar 

  64. S 1975] Shabat, A. B.: The inverse scattering problem for a system of differential equations. Funk. Anal. Priloz. 9 (3), 75-78 (1975) [Russian]

    Google Scholar 

  65. Russian]; English transl. in Diff. Equations 15, 1299 - 1307 (1980)

    Google Scholar 

  66. Segal, G.: Unitary representations of some infinite dimensional groups. Comm. Math. Phys. 80, 301 - 342 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Sklyanin, E. K.: On complete integrability of the Landau-Lifshitz equation. Preprint LOMI E-3-79, Leningrad 1979

    Google Scholar 

  68. Russian]; English trans!. in Funct. Anal. Appl. 16, 263 - 270 (1982)

    Google Scholar 

  69. Toda, M.: Waves in nonlinear lattice. Prog. Theor. Phys. Suppl. 45, 174 - 200 (1970)

    Article  ADS  Google Scholar 

  70. T 1974] Takhtajan, L. A.: Exact theory of propagation of ultra-short optical pulses in two-level media. Zh. Exp. Teor. Fiz. 66, 476-489 (1974) [Russian]

    Google Scholar 

  71. Takhtajan, L. A.: Integration of the continuous Heisenberg spin chain through the inverse scattering method. Phys. Lett. 64A, 235 - 237 (1977)

    Article  MathSciNet  Google Scholar 

  72. Russian]; English transl. in Theor. Math. Phys. 21, 1046 - 1057 (1974)

    Google Scholar 

  73. TF 1982] Takhtajan, L. A., Faddeev, L. D.: A simple connection between geometrical and Hamiltonian representations for the integrable nonlinear equations. In: Boundary-value problems of mathematical physics and related questions in function theory. 14. Zapiski Nauchn. Semin. LOMI 115, 264273 (1982) [Russian]

    Google Scholar 

  74. Russian]; English transi. in Theor. Math. Phys. 57, 1059 - 1073 (1983)

    Google Scholar 

  75. Volterra, V.: Leçons sur la théorie Mathématique de la Lutte pour la Vie. Paris, Gauthier-Villars 1931

    MATH  Google Scholar 

  76. Russian]; English transi. in Sov. Phys. Dokl. 28, 458 - 459 (1983)

    Google Scholar 

  77. Russian]; English transi. in Russian Math. Surveys 28 (5), 87 - 132 (1973)

    Google Scholar 

  78. VT 1984] Veselov, A. P., Takhtajan, L. A.: The integrability of Novikov’s equations for the principal chiral fields with a multi-valued Lagrangian. Dokl. Akad. Nauk SSSR 279, 1097-1110 (1984) [Russian]

    Google Scholar 

  79. VV 1985] Vladimirov, V. S., Volovich, I. V.: Local and nonlocal currents for nonlinear equations. Teor. Mat. Fiz. 62, 3-29 (1985) [Russian]

    Google Scholar 

  80. Wilson, G.: Commuting flows and conservation laws for Lax equations. Math. Proc. Cambridge Phil. Soc. 86, 131 - 143 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  81. Wilson, G.: On two constructions of conservation laws for Lax equations. Quart. J. Math. Oxford 32, 491 - 512 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  82. Witten, E.: Global aspects of current algebra. Nucl. Phys. B223, 422 - 432 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  83. Witten, E.: Nonabelian bosonization in two dimensions. Comm. Math. Phys. 92, 455 - 472 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. 37B, 95 - 97 (1971)

    Google Scholar 

  85. Russian]; English transl. in Funct. Anal. Appl. 5, 280 - 287 (1971)

    Google Scholar 

  86. Russian]; English transi. in Soy. Phys. JETP 42, 842 - 850 (1976)

    Google Scholar 

  87. Russian]; English transl. in Sov. Phys. JETP 47, 1017 - 1027 (1978)

    Google Scholar 

  88. Zakharov, V. E., Manakov, S. V., Novikov, S. P., Pitaievski, L. P.: Theory of Solitons. The Inverse Problem Method. Moscow, Nauka 1980 [Russian]; English transi.: New York, Plenum 1984

    Google Scholar 

  89. ZS 1971] Zhiber, A. V., Shabat, A. B.:Klein-Gordon equations with a nontrivial group. Dokl. Akad. Nauk SSSR 247, 1103-1106 (1971) [Russian]

    Google Scholar 

  90. Russian]; English transi. in Funct. Anal. Appl. 8, 226 - 235 (1974)

    Google Scholar 

  91. Russian]; English transl. in Funct. Anal. Appl. 13, 166 - 174 (1979)

    Google Scholar 

  92. Russian]; English transi. in Theor. Math. Phys. 38, 17 - 23 (1979)

    Google Scholar 

  93. Russian]; English transl. in Soy. Phys. Dokl. 19, 824 - 826 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faddeev, L.D., Takhtajan, L.A. (2007). Basic Examples and Their General Properties. In: Hamiltonian Methods in the Theory of Solitons. Springer Series in Soviet Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69969-9_5

Download citation

Publish with us

Policies and ethics