A Bio-inspired Neural Model for Colour Image Segmentation

  • Francisco Javier Díaz-Pernas
  • Míriam Antón-Rodríguez
  • José Fernando Díez-Higuera
  • Mario Martínez-Zarzuela
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5064)

Abstract

This paper describes a multi-scale neural model to enhance regions and extract contours of colour-texture image taking into consideration the theory for visual information processing in the early stages of human visual system. It is composed of two main components: the Colour Opponent System (COS) and the Chromatic Segmentation System (CSS). The structure of the CSS architecture is based on BCS/FCS systems, so the proposed architecture maintains the essential qualities of the base model such as illusory contours extraction, perceptual grouping and discounting the illuminant. Experiments performed show the good visual results obtained and the robustness of the model when processing images presenting different levels of noise.

Keywords

image analysis image segmentation neural network multiple scale model Boundary Contour System Feature Contour System enhancing colour image regions colour-opponent processes 

References

  1. 1.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pat. Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  2. 2.
    Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4, 759–771 (1991)CrossRefGoogle Scholar
  3. 3.
    Cohen, M.A., Grossberg, S.: Neural dynamics of brightness perception: features, boundaries, diffusion, and resonance. Perception and Psychophysics 36, 428–456 (1984)Google Scholar
  4. 4.
    Daugman, J.G.: Two-dimensional spectral analysis of cortical receptive field profiles. Vision Research 20, 847–856 (1980)CrossRefGoogle Scholar
  5. 5.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2/E. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  6. 6.
    Grossberg, S.: Contour enhancement, short term memory, and constancies in reverberating neural networks. Studies in Applied Mathematics 52, 217–257 (1973)MathSciNetGoogle Scholar
  7. 7.
    Grossberg, S.: Outline of a theory of brightness, colour, and form perception. In: Degreef, E., van Buggenhault, J. (eds.) Trends in mathematical psychology. North Holland, Amsterdam (1984)Google Scholar
  8. 8.
    Grossberg, S., Mingolla, E.: Neural dynamics of perceptual grouping: textures, boundaries, and emergent segmentations. In: Grossberg, S. (ed.) The adaptive brain II, ch. 3. North Holland, Amsterdam (1988)Google Scholar
  9. 9.
    Grossberg, S., Mingolla, E., Williamson, J.: Synthethic aperture radar processing by a multiple scale neural system for boundary and surface representation. Neural Networks 8, 1005–1028 (1995)CrossRefGoogle Scholar
  10. 10.
    Hubel, D.H.: Eye, Brain and Vision. Scientific American Library 22, 70 (1995)Google Scholar
  11. 11.
    Hubel, D.H., Livingstone, M.S.: Color and contrast sensitivity in lateral geniculate body and Primary Visual Cortex of the Macaque Monkey. The Journal of Neuroscience 10(7), 2223–2237 (1990)Google Scholar
  12. 12.
    Intel Corporation, Open Source Computer Vision Library (2006), http://www.intel.com/technology/computing/opencv/
  13. 13.
    Landy, M.S., Bergen, J.R.: Texture segregation and orientation gradient. Vision Research 31(4), 679–693 (1991)CrossRefGoogle Scholar
  14. 14.
    Mirmehdi, M., Petrou, M.: Segmentation of color textures. IEEE Trans. Pattern Analysis and Machine Intelligence 22(2), 142–159 (2000)CrossRefGoogle Scholar
  15. 15.
    Mingolla, E., Ross, W., Grossberg, S.: A neural network for enhancing boundaries and surfaces in synthetic aperture radar images. Neural Networks 12, 499–511 (1999)CrossRefGoogle Scholar
  16. 16.
    Pollen, D.A., Ronner, S.F.: Visual cortical neurons as localized spatial frequency filters. IEEE Transactions on Systems, Man, and Cybernetics SMC-13(15), 907–916 (1983)Google Scholar
  17. 17.
    Wilson, H.R., Levi, D., Maffei, L., Rovamo, J., De Valois, R.: The Perception of Form: Retina to Striate Cortex. In: En Spillmann, L., Werner, J.S. (eds.) Visual Perception: The Neurophysiological Foundations, ch.10. Academic Press, San Diego (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Francisco Javier Díaz-Pernas
    • 1
  • Míriam Antón-Rodríguez
    • 1
  • José Fernando Díez-Higuera
    • 1
  • Mario Martínez-Zarzuela
    • 1
  1. 1.Department of Signal Theory, Communications and Telematics Engineering Telecommunications Engineering SchoolUniversity of ValladolidValladolidSpain

Personalised recommendations