Real-Time Emotion Recognition from Speech Using Echo State Networks

  • Stefan Scherer
  • Mohamed Oubbati
  • Friedhelm Schwenker
  • Günther Palm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5064)

Abstract

The goal of this work is to investigate real-time emotion recognition in noisy environments. Our approach is to solve this problem using novel recurrent neural networks called echo state networks (ESN). ESNs utilizing the sequential characteristics of biologically motivated modulation spectrum features are easy to train and robust towards noisy real world conditions. The standard Berlin Database of Emotional Speech is used to evaluate the performance of the proposed approach. The experiments reveal promising results overcoming known difficulties and drawbacks of common approaches.

References

  1. 1.
    Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W., Weiss, B.: A database of german emotional speech. In: Proceedings of Interspeech 2005 (2005)Google Scholar
  2. 2.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine 18(1), 32–80 (2001)CrossRefGoogle Scholar
  3. 3.
    Dellaert, F., Polzin, T., Waibel, A.: Recognizing emotion in speech. In: Proceedings of ICSLP, pp. 1970–1973 (1996)Google Scholar
  4. 4.
    Devillers, L., Vidrascu, L., Lamel, L.: Challanges in real-life emotion annotation and machine learning based detection. Neural Networks 18, 407–422 (2005)CrossRefGoogle Scholar
  5. 5.
    Drullman, R., Festen, J., Plomp, R.: Effect of reducing slow temporal modulations on speech reception. Journal of the Acousic Society 95, 2670–2680 (1994)CrossRefGoogle Scholar
  6. 6.
    Fragopanagos, N., Taylor, J.G.: Emotion recognition in human-computer interaction. Neural Networks 18, 389–405 (2005)CrossRefGoogle Scholar
  7. 7.
    Hermansky, H.: Auditory modeling in automatic recognition of speech. In: Proceedings of Keele Workshop (1996)Google Scholar
  8. 8.
    Hermansky, H.: The modulation spectrum in automatic recognition of speech. In: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding (1997)Google Scholar
  9. 9.
    Jaeger, H.: Tutorial on training recurrent neural networks, covering bppt, rtrl, ekf and the echo state network approach. Technical Report 159, Fraunhofer-Gesellschaft, St. Augustin Germany (2002)Google Scholar
  10. 10.
    Kanederaa, N., Araib, T., Hermansky, H., Pavele, M.: On the relative importance of various components of the modulation spectrum for automatic speech recognition. Speech Communications 28, 43–55 (1999)CrossRefGoogle Scholar
  11. 11.
    Lee, C.M., Yildirim, S., Bulut, M., Kazemzadeh, A., Busso, C., Deng, Z., Lee, S., Narayanan, S.S.: Emotion recognition based on phoneme classes. In: Proceedings of ICSLP 2004 (2004)Google Scholar
  12. 12.
    Nicholson, J., Takahashi, K., Nakatsu, R.: Emotion recognition in speech using neural networks. Neural Computing and Applications 9, 290–296 (2000)CrossRefGoogle Scholar
  13. 13.
    Oudeyer, P.-Y.: The production and recognition of emotions in speech: features and algorithms. International Journal of Human Computer Interaction 59(1-2), 157–183 (2003)Google Scholar
  14. 14.
    Petrushin, V.: Emotion in speech: recognition and application to call centers. In: Proceedings of Artificial Neural Networks in Engineering (1999)Google Scholar
  15. 15.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)Google Scholar
  16. 16.
    Scheirer, E., Slaney, M.: Construction and evaluation of a robust multifeature speech/music discriminator. In: Proceedings of ICASSP, vol. 1, pp. 1331–1334 (1997)Google Scholar
  17. 17.
    Scherer, K.R., Johnstone, T., Klasmeyer, G.: Affective Science. In: Handbook of Affective Sciences - Vocal expression of emotion, pp. 433–456. Oxford University Press, Oxford (2003)Google Scholar
  18. 18.
    Scherer, S., Schwenker, F., Palm, G.: Classifier fusion for emotion recognition from speech. In: Proceedings of Intelligent Environments 2007 (2007)Google Scholar
  19. 19.
    Yacoub, S., Simske, S., Lin, X., Burns, J.: Recognition of emotions in interactive voice response systems. In: Proceedings of Eurospeech 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefan Scherer
    • 1
  • Mohamed Oubbati
    • 1
  • Friedhelm Schwenker
    • 1
  • Günther Palm
    • 1
  1. 1.Institute of Neural Information ProcessingUlm UniversityGermany

Personalised recommendations