Time Complexity and Convergence Analysis of Domain Theoretic Picard Method

  • Amin Farjudian
  • Michal Konečný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5110)


We present an implementation of the domain-theoretic Picard method for solving initial value problems (IVPs) introduced by Edalat and Pattinson [1]. Compared to Edalat and Pattinson’s implementation, our algorithm uses a more efficient arithmetic based on an arbitrary precision floating-point library. Despite the additional overestimations due to floating-point rounding, we obtain a similar bound on the convergence rate of the produced approximations. Moreover, our convergence analysis is detailed enough to allow a static optimisation in the growth of the precision used in successive Picard iterations. Such optimisation greatly improves the efficiency of the solving process. Although a similar optimisation could be performed dynamically without our analysis, a static one gives us a significant advantage: we are able to predict the time it will take the solver to obtain an approximation of a certain (arbitrarily high) quality.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edalat, A., Pattinson, D.: A domain theoretic account of Picard’s theorem. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 494–505. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Edalat, A., Pattinson, D.: A domain theoretic account of Euler’s method for solving initial value problems. In: Dongarra, J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 112–121. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Farjudian, A., Konečný, M.: Time complexity and convergence analysis of domain theoretic picard method (March 2008),
  4. 4.
    Müller, N.T.: The iRRAM: Exact arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Lambov, B.: Reallib: An efficient implementation of exact real arithmetic. Mathematical Structures in Computer Science 17(1), 81–98 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)zbMATHGoogle Scholar
  7. 7.
    Edalat, A., Pattinson, D.: Domain theoretic solutions of initial value problems for unbounded vector fields. In: Escardó, M. (ed.) Proc. MFPS XXI. Electr. Notes in Theoret. Comp. Sci, vol. 155, pp. 565–581 (2005)Google Scholar
  8. 8.
    Rauh, A., Hofer, E.P., Auer, E.: Valencia-ivp: A comparison with other initial value problem solvers. In: CD-Proc. of the 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics SCAN 2006, Duisburg, Germany. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  9. 9.
    Nedialkov, N.S.: Vnode-lp: A validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University (July 2006)Google Scholar
  10. 10.
    Makino, K., Berz, M.: Cosy infinity version 9. Nuclear Instruments and Methods A558, 346–350 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Amin Farjudian
    • 1
  • Michal Konečný
    • 1
  1. 1.Computer ScienceAston UniversityBirminghamUK

Personalised recommendations