Skip to main content

Hydrogen Production

  • Chapter

Part of the book series: Green Energy and Technology ((GREEN))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fossil fuel. (2006, November 13). In Wikipedia, The Free Encyclopedia. Retrieved 10:13, November 20, 2006, from http://en.wikipedia.org/w/index.php?title=Fossil_fuel&oldid=87453991.

    Google Scholar 

  2. IEA Energy Technology Essentials, ETE 05, OECD/IEA, April 2007.

    Google Scholar 

  3. International Energy Outlook 2001, http://www.eia.doe.gov/oiaf/archive/ieo01/index. html.

    Google Scholar 

  4. The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, Chapter 8, Committee on Alternatives and Strategies for Future Hydrogen Production and Use, National Academy of Engineering, Board on Energy and Environmental Systems, The National Academies Press, Washington, DC, 2004, http://books.nap.edu/openbook.php record_id=10922\&page=R2.

    Google Scholar 

  5. http://en.wikipedia.org/wiki/Fossil_fuel_power_plant#Fuel_processing.

    Google Scholar 

  6. M. C. Carbo, D. Jansen, W. G. Haije, and A. H. M. Verkooijen, Advanced Membrane Reactors for Fuel Decarbonisation in IGCC: H2 or CO2 separation?, Presented at the Fifth Annual Conference on Carbon Capture and Sequestration, 8–11 May 2006, Alexandria VA, U.S.A.

    Google Scholar 

  7. P. Middleton, H. Solgaard-Andersen, and T. Rostrup-Nielsen, Hydrogen Production with CO2 Capture Using Membrane Reactors, Joint Industry CO2 Capture Project (CCP), Digital Business, April 2003.

    Google Scholar 

  8. https://www.HFPerope.org/hfp/ip_consultation.

    Google Scholar 

  9. S.-T. Lin, Y.-H. Chen, C.-C. Yu, Y.-C. Liu, and C.-H. Lee, Modelling an experimental methane fuel processor, Journal of Power Sources 148 (2005) 43–53.

    Google Scholar 

  10. C. Forsberg, Hydrogen Futures, Nuclear Energy, and Separations, Plenary Lecture at 13th Symposium on Separation Science and Technology for Energy Applications, Oak Ridge National Laboratory, Gatlinburg, Tennessee, October 27–30, 2003.

    Google Scholar 

  11. The Intergovernmental Panel on Climate Change (IPCC) has defined the global warming potential as follows: “An index describing the radiative characteristics of well-mixed greenhouse gases that represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing infrared radiation. This index approximates the time-integrated warming effect of a unit mass of a given greenhouse gas in today’s atmosphere, relative to that of carbon dioxide”.

    Google Scholar 

  12. Environmental Protection Agency (EPA), “Current and Future Methane Emissions from Natural Sources.” Available online at http://www.epa.gov/ghginfo/reports/curr.htmUT. Accessed on December 10, 2003.

    Google Scholar 

  13. J. Deutch and E. Moniz, “The Future of Nuclear Power”, Massachusetts Institute of Technology Interdisciplinary Study, July, 2003. http://web.mit.edu/nuclearpower/

    Google Scholar 

  14. P. Pickard, “Sulfur-Iodine Thermochemical Cycle”, Project PD20, 2007 DOE Hydrogen Program Review, May 16, 2007. http://www.hydrogen.energy.gov/annual_review07_proceed\-ings.html

    Google Scholar 

  15. K. Schultz, C. Sink, P. Pickard, S. Herring, J. O’Brien, B. Buckingham, W. Summers, and M. Lewis, “Status of the US Nuclear Hydrogen Initiative”, Paper 7530, Proceedings of ICAPP 2007, Nice, France, May 13–18, 2007.

    Google Scholar 

  16. W. Summers, M. Gorensek, and J. Weidner, “Hybrid Sulfur Cycle Flowsheets for Hydrogen Production from Nuclear Energy”, Paper 182g, Proceedings of AIChE 2006 Spring Meeting, Orlando, Florida, April 26, 2006. http://www.aiche-ned.org/conferences/aiche2006spring/session_182/AICHE2006spring-182g-Gorensek.pdf

    Google Scholar 

  17. S. P. S. Badwal, S. Giddey, and F. T. Ciacchi, Hydrogen and oxygen generation with polymer electrolyte membrane (PEM)-based electrolytic technology, Ionics 12 (2006) 7–14.

    Google Scholar 

  18. J. A. Turner, A realizable renewable energy future, Science 285 (1999) 687–689; 1493–1493.

    Google Scholar 

  19. Global Wind Energy Market Report, American Wind Energy Association, March 2004; http://www.awea.org/resources/resource%5Flibrary/#DocumentsandReports.

    Google Scholar 

  20. Renewable Energy Trends 2003. With Preliminary Data For 2003. Energy Information Administration, U.S. Department of Energy, Washington, DC 20585, July 2004, http://tonto.eia.doe.gov/FTPROOT/renewables/062803.pdf.

    Google Scholar 

  21. K. S. Cory, S. Bernow, W. Dougherty, S. Kartha, and E. Williams, Analysis of Wind Turbine Cost Reductions: The Role of Research and Development and Cumulative Production, Presented at AWEA’s WINDPOWER ’99 Conference, Burlington, VT, 22 June 1999 http://www.tellus.org/energy/publications/awea9_amy.pdf.

    Google Scholar 

  22. EurObservER, Wind Energy Barometer, February 2007.

    Google Scholar 

  23. Hydrogen Posture Plan. An Integrated Research, Development, and Demonstration Plan, U.S. Department of Energy, February 2004; http://www1.eere.energy.gov/ hydrogenandfuelcells/pdfs/hudrogen_posture_plan.pdf.

    Google Scholar 

  24. L. J. Fingersh, Optimized Hydrogen and Electricity Generation from Wind, National Renewable Energy Laboratory, NREL/TP-500-34364, Golden, Colorado 80401–3393, June 2003, http://www.nrel.gov/docs/fy03osti/34364.pdf.

    Google Scholar 

  25. T. B. Johansson, H. Kelly, A. K. N. Reddy, and R. H. Williams (eds.). Renewable Energy: Sources for Fuels and Electricity. Washington, D.C.: Island Press, 1993.

    Google Scholar 

  26. M. D. Archer and R. Hill (eds.), Clean Electricity from Photovoltaics, Series on Photoconversion of Solar Energy, Vol. 1, Imperial College Press, London, 2001.

    Google Scholar 

  27. M. A. Green, Photovoltaic principles, Physica E 14 (2002) 11–17.

    Google Scholar 

  28. H. S. Ullal, Polycrystalline Thin Film Photovoltaic Technologies: Progress and Technical Issues, NREL/CP-520-36241, August 2004, accessible at www.nrel.gov/ncpv/thin_film/ docs/nrel_partnership_ullal_pv_sec_2004_status.doc.

    Google Scholar 

  29. R. D. Wieting, CIS manufacturing at the MW scale, Proceedings of the 29th IEEE Photovoltaic Specialists Conference, New Orleans, USA, May 18–22, (2002). 478–483.

    Google Scholar 

  30. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Photovoltaic technology: the case for thin-film solar cells, Science, 285 (1999) 692–698.

    Google Scholar 

  31. J. Yang, A. Banerjee, and S. Guha, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Applied Physics Letters, 70 (22) (1997) 2975–2977.

    Google Scholar 

  32. B. Schroeder, Status report: solar cell related research and development using amorphous and microcrystalline silicon deposited by HW(Cat)CVD, Thin Solid Films 430 (2003) 1–6.

    MathSciNet  Google Scholar 

  33. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films. Nature, 353 (1991) 737–740.

    Google Scholar 

  34. M. Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 332–344.

    Article  Google Scholar 

  35. D. O. Hall and K. K. Rao, Photosynthesis. 6th edn. Cambridge, U.K.: Cambridge University Press; 1999.

    Google Scholar 

  36. T. A. Milne et al., Hydrogen from Biomass: State of the Art and Research Challenges, Report No. IEA/H2/TR-02/001, NREL, Golden, CO, 2002.

    Google Scholar 

  37. D. De La Torre Ugarte, M. E. Walsh, H. Shapouri, and S. P.Slinsky, The Economic Impacts of Bioenergy Crop Production on US Agriculture, USDA, Washington, DC, 2003.

    Google Scholar 

  38. D. J. A. Johansson and Ch. Azar, A scenario based analysis of land competition between food and bioenergy production in the US, Presented at Climate Change Mitigation Measures in the Agro-Forestry Sector and Biodiversity Futures, 16–17 October 2006–ICTP, Trieste, Italy, Accepted for publication in Climatic Change.

    Google Scholar 

  39. P. L. Spath, J. M. Lane, M. K. Mann, and W. A. Amos, Update of Hydrogen from Biomass – Determination of the Delivered Cost of Hydrogen, NREL,Golden, Colorado, Midwest Research Institute, Battelle, Bechtel, 2001.

    Google Scholar 

  40. J. Woodward, M. Orr, K. Cordray, and E. Greenbaum, Efficient Production of Hydrogen from Glucose-6-Phosphate, Oak Ridge National Laboratory; Proceedings of the 2000 DOE Hydrogen Program Review NREL/CP-570-28890.

    Google Scholar 

  41. W. Merida, P.-C. Maness, R. C. Brown, and D. B. Levin, Enhanced hydrogen production from indirectly heated, gasified biomass, and removal of carbon gas emissions using a novel biological gas reformer, International Journal of Hydrogen Energy 29 (2004) 283–290.

    Google Scholar 

  42. Economic input–output life cycle assessment, Green design initiative, Carnegie Mellon University. Available online at http://www.eiolca.net, Accessed on 14 December 2004.

    Google Scholar 

  43. M. Granovskii, I. Dincer, and M. A. Rosen, Environmental and economic aspects of hydrogen production and utilization in fuel cell vehicles, Journal of Power Sources 157 (2006) 411–421.

    Article  Google Scholar 

  44. N. Zamel and X. Li, Life cycle analysis of vehicles powered by a fuel cell and by internal combustion engine for Canada, Journal of Power Sources 155 (2006) 297–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hočevar, S., Summers, W. (2008). Hydrogen Production. In: Léon, A. (eds) Hydrogen Technology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69925-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69925-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79027-3

  • Online ISBN: 978-3-540-69925-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics