To Have or to Be? Possessing Data Versus Being in a State – Two Different Intuitive Concepts Used in Informatics

  • Michael Weigend
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5090)


In computer programming it is sometimes helpful to start with the definition of a state transition diagram (finite state automaton), which describes on a rather abstract level but in an intuitive way how the system is supposed to react to events in certain situations. The reaction is dependent on the internal state of the running program. The concept of being in a state differs fundamentally from the concept of data storage or data possession usually associated to variables or object attributes. Thus there are certain cognitive difficulties to overcome, when creating a program on the basis of a state transition diagram.


Hybrid Electrical Vehicle Data Possession Finite State Automaton Computational Thinking Event Handler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brändle, M., Hartmann, W., Nievergelt, J., Reichert, R.: Kara: Ein theoriebasierter Ansatz für Lernumgebungen zu fundamentalen Konzepten der Informatik. In: Proceedings INFOS, pp. 201–210 (2003)Google Scholar
  2. 2.
    di Sessa, A.A.: Knowledge in Pieces. In: Forman, G., Pufall, P.B. (eds.) Constructivism in the Computer Age, pp. 49–70. Lawrence Erlbaum, Hillsdale (1988)Google Scholar
  3. 3.
    di Sessa, A.A.: Changing Minds. In: Computers, Learning, and Literacy. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Fischbein, E.: Intuition in Science and Mathematics. Reidel, Dordrecht, Boston, Lancaster, Tokio (1987)Google Scholar
  5. 5.
    Fromm, E.: To have or to be? Harper and Row, NewYork (1976)Google Scholar
  6. 6.
    Gordon, T.: Parent Effectiveness Training: The Proven Program for Raising Responsible Children. Three Rivers Press (2000)Google Scholar
  7. 7.
    Holland, S., Griffiths, R., Woodman, M.: Avoiding Object Misconceptions. In: Proceedings ACM SIGCSE, pp. 131–134 (1997)Google Scholar
  8. 8.
    Hubwieser, P.: Didaktik der Informatik. Springer, Berlin, Heidelberg, New York (2004)Google Scholar
  9. 9.
    Lakoff, G., Núnez, R.E.: The Metaphorical Structure of Mathematics: Sketching Out Cognitive Foundations for a Mind-Based Mathematics. In: English, L.D. (ed.) Mathematical Reasoning. Analogies, Metaphors, and Images, pp. 21–92. Lawrence Erlbaum, Mahwah (1997)Google Scholar
  10. 10.
    Schulz von Thun, F.: Miteinander reden. Störungen und Klärungen. Rowohlt, Reinbek bei Hamburg (1981)Google Scholar
  11. 11.
    Toyota Motor Corporatiom: Toyota Hybrid System THS II. Tokyo (2003)Google Scholar
  12. 12.
    Tuckman, B.: Developmental sequence in small groups. Psychological Bulletin 63, 384–399 (1965)CrossRefGoogle Scholar
  13. 13.
    Weigend, M.: Intuitive Modelle der Informatik. Universitätsverlag Potsdam, Potsdam (2007)Google Scholar
  14. 14.
    Wing, J.M.: Computational Thinking. Communications of the ACM 49(3), 33–35 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Weigend
    • 1
  1. 1.Institut für Didaktik der Mathematik und der InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations