Advertisement

Topology-Preserving Discrete Deformable Model: Application to Multi-segmentation of Brain MRI

  • Sanae Miri
  • Nicolas Passat
  • Jean-Paul Armspach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)

Abstract

Among the numerous 3D medical image segmentation methods proposed in the literature, very few have intended to provide topologically satisfying results, a fortiori for multiple object segmentation. In this paper, we present a method devoted to parallel segmentation of the main classes of cerebral tissues from 3D magnetic resonance imaging data. This method is based on a multi-class discrete deformable model strategy, starting from a topologically correct model, and guiding its evolution in a topology-preserving fashion. Validations on a commonly used cerebral image database provide promising results and justify the further development of a general methodological framework based on the concepts exposed in this preliminary work.

Keywords

Topology preservation multi-segmentation discrete deformable model medical imaging 

References

  1. 1.
    Bazin, P.-L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging 26(4), 487–496 (2007)CrossRefGoogle Scholar
  2. 2.
    Bertrand, G., Malandain, G.: A new characterization of three-dimensional simple points. Pattern Recognition Letters 15(2), 169–175 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bosc, M., Heitz, F., Armspach, J.-P.: Statistical atlas-based sub-voxel segmentation of 3D brain MRI. In: Proceedings of International Conference on Image Processing - ICIP 2003. 10th International Conference, Barcelona, Spain, September 14-17 2003, vol. 2, pp. 1077–1080. IEEE Signal Processing Society, Los Alamitos (2003)Google Scholar
  4. 4.
    Bricq, S., Collet, C., Armspach, J.-P.: Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas. In: Proceedings of International Symposium on Biomedical Imaging - ISBI 2006. 3rd International Symposium, Arlington, VA, USA, April 6-9 2006, pp. 386–389 (2006)Google Scholar
  5. 5.
    Cointepas, Y., Bloch, I., Garnero, L.: Joined segmentation of cortical surface and brain volume in MRI using a homotopic deformable cellular model. In: Proceedings of 3D Digital Imaging and Modeling - 3DIM 1999, 2nd International Conference, Ottawa, Canada, October 4-8 1999, pp. 240–248 (1999)Google Scholar
  6. 6.
    Daragon, X., Couprie, M.: Neo-cortex segmentation from IRM data in order topology. In: Proceedings of Reconnaissance de Formes et Intelligence Artificielle - RFIA 2002, 13th Francophone Conference, Angers, France, January 8-10, 2002, vol. 3, pp. 809–818 (2002)Google Scholar
  7. 7.
    Dokládal, P., Bloch, I., Couprie, M., Ruijters, D., Urtasun, R., Garnero, L.: Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators. Pattern Recognition 36(10), 2463–2478 (2003)CrossRefGoogle Scholar
  8. 8.
    Dokládal, P., Lohou, C., Perroton, L., Bertrand, G.: Liver blood vessels extraction by a 3-D topological approach. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 98–105. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Mangin, J.-F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision 5(4), 297–318 (1995)CrossRefGoogle Scholar
  10. 10.
    Passat, N., Ronse, C., Baruthio, J., Armspach, J.-P., Bosc, M., Foucher, J.: Using multimodal MR data for segmentation and topology recovery of the cerebral superficial venous tree. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 60–67. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sanae Miri
    • 1
    • 2
  • Nicolas Passat
    • 1
  • Jean-Paul Armspach
    • 2
  1. 1.LSIIT, UMR 7005 CNRS/ULP, Strasbourg 1 UniversityFrance
  2. 2.LINC, UMR 7191 CNRS/ULP, Strasbourg 1 UniversityFrance

Personalised recommendations