Advertisement

A People Counting System Based on Dense and Close Stereovision

  • Tarek Yahiaoui
  • Cyril Meurie
  • Louahdi Khoudour
  • François Cabestaing
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)

Abstract

We present in this paper a system for passengers counting in buses based on stereovision. The objective of this work is to provide a precise counting system well adapted to buses environment. The processing chain corresponding to this counting system involves several blocks dedicated to the detection, segmentation, tracking and counting. From original stereoscopic images, the system operates primarily on the information contained in disparity maps previously calculated with a novel algorithm. We show that one can obtain a counting accuracy of 99% on a large data set including specific scenarios played in laboratory and on some video sequences shot in a bus during exploitation period.

Keywords

Similarity Criterion Dissimilarity Measure Counting System Stereo Match Stereoscopic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beyme, D.: Person counting using stereo. In: Workshop on Human Motion, pp. 127–133 (2000)Google Scholar
  2. 2.
    Terada, K., et al.: A counting method of the number of passing people using a stereo camera. In: 25th IEEE Conference of Industrial Electronics Society, pp. 338–342 (1999)Google Scholar
  3. 3.
    Bobick, A.F., Intillle, H.S.: Large occlusion stereo. International Journal On Computer Vision 33, 181–200 (1999)CrossRefGoogle Scholar
  4. 4.
    Paris, S., Sillon, F.: Optimisation a base de flot de graphe pour l’acquisition d’informations 3d à partir de séquences d’image. In: 15 èmes Journées de l’Association Française d’Informatique Graphique, pp. 165–182 (2002)Google Scholar
  5. 5.
    Mansouri, A.R., Mitiche, A.: Selective image diffusion: Application to disparity estimation. In: IEEE International Conference on Image Processing, vol. 3, pp. 284–288 (1998)Google Scholar
  6. 6.
    Sun, J., Zheng, N.N.: Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelegence 25(7), 787–800 (2003)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Wei, G.Q., Brauer, W., Herzinger, G.: Intensity and gradient based stereo matching using hierarchical gaussian basis functions. IEEE Transactions on Pattern Analysis and Machine Intelegence 20(11), 1143–1160 (1998)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Kambhamatteu, C.: Stereo matching with segmentation-based cooperation. In: 7th European Conference on Computer Vision, vol. 2, pp. 556–571 (2002)Google Scholar
  9. 9.
    Martin, J., Krowley, J.L.: Experimental comparison of correlation techniques. In: International Conference on Intelligent Autonomous Systems (2002)Google Scholar
  10. 10.
    Haris, S., Vandermark, W., Cavrila, D.M.: A comparative study of fast dense stereo vision algorithms. In: IEEE Intelligent Vehicles Symposium, pp. 319–324 (2004)Google Scholar
  11. 11.
    Vandermark, W., Gavrila, D.M.: Real-time dense stereo for intelligent vehicles. IEEE Transactions on Intelligent Transportation Systems 7(1), 38–50 (2006)CrossRefGoogle Scholar
  12. 12.
    Yahiaoui, T.: Une approche de stéréovision dense intégrant des contraintes de similarité. Application au comptage de passagers entrant et sortant d’un autobus. PhD thesis, University of Lille (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tarek Yahiaoui
    • 1
  • Cyril Meurie
    • 1
  • Louahdi Khoudour
    • 1
  • François Cabestaing
    • 2
  1. 1.French National Institute for Transport and Safety Research (INRETS-LEOST)Villeneuve d’Ascq Cedex
  2. 2.(LAGIS laboratory, UMR 8146) Cite ScientifiqueUniversity of Sciences and Technology of LilleVilleneuve d’Ascq Cedex

Personalised recommendations