Region-Based Wavelet-Packet Adaptive Algorithm for Sparse Response Identification

  • Odair A. Noskoski
  • José C. M. Bermudez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)


This paper proposes a new wavelet-packet-based algorithm for sparse response identification. The distinctive features of the new algorithm are a region-based strategy for adaptive weight activation and a new deactivation/activation schedule across the transform scales. The new algorithm shows improved performance when compared to existing wavelet-based algorithms with similar characteristics. The new strategies lead to a faster wavelet-packet transform construction and to improved robustness to design parameters when compared to previous solutions. Monte Carlo simulation results show good performances regarding convergence speed and robustness to design parameter choice.


Adaptive systems echo cancellation sparse systems 


  1. 1.
    Deng, H., Doroslovački, M.: Proportionate adaptive algorithms for network echo cancellation. IEEE Transactions on Signal Processing 54(5), 1794–1803 (2006)CrossRefGoogle Scholar
  2. 2.
    Sugiyama, A., Ikeda, S., Hirano, A.: A fast convergence algorithm for sparse-tap adaptive FIR filters identifying an unknown number of dispersive regions. IEEE Transactions on Signal Processing 50(12), 3008–3017 (2002)CrossRefGoogle Scholar
  3. 3.
    Homer, J., Mareels, I.: LS detection guided NLMS estimation of sparse systems. In: Proc. of the ICASSP., vol. 2, pp. 861–864 (2004)Google Scholar
  4. 4.
    Ho, K.C., Blunt, S.D.: Rapid identification of a sparse impulse response using an adaptive algorithm in the Haar domain. IEEE Transactions on Signal Processing 51(3), 628–638 (2003)MathSciNetGoogle Scholar
  5. 5.
    Bershad, N.J., Bist, A.: Fast coupled adaptation for sparse impulse responses using a partial Haar transform. IEEE Transactions on Signal Processing 53(3), 966–976 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Noskoski, O.A., Bermudez, J.C.M.: Wavelet-packet-based adaptive algorithm for sparse impulse response identification. In: Proc. of the ICASSP., vol. 3, pp. 1321–1324 (2007)Google Scholar
  7. 7.
    ITU-T Recommendation G. 168: Digital Network Echo Cancellers (2004)Google Scholar
  8. 8.
    Mallat, S.: A wavelet tour of signal processing. Academic Press, London (1998)zbMATHGoogle Scholar
  9. 9.
    Sayed, A.H.: Fundamentals of Adaptive Filtering. Wiley, Chichester (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Odair A. Noskoski
    • 1
  • José C. M. Bermudez
    • 1
  1. 1.Department of Electrical EngineeringFederal University of Santa Catarina 

Personalised recommendations