Advertisement

Mean Weight Behavior of Coupled LMS Adaptive Systems Applied to Acoustic Feedback Cancellation in Hearing Aids

  • Yasmín Montenegro M.
  • José C. M. Bermudez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)

Abstract

This paper presents a transient analysis of a hearing aids adaptive feedback canceller. The system employs an LMS adaptive estimator and an LMS adaptive predictor operating simultaneously. The nature of the practical problem makes the input to the adaptive estimator and the interference to its output statistically correlated. First, a modification is proposed to the original structure that accelerates convergence without compromising the cancellation level. The modified structure is then analyzed for slow adaptation and for an autoregressive input signal. Analytical models are derived for the mean behavior of the adaptive weights. Monte Carlo simulations verify the accuracy of the derived model.

Keywords

Adaptive systems feedback LMS hearing aids 

References

  1. 1.
    Chung, K.: Challenges and recent develpoments in heraing aids part.1 speech undestanding in noise, microphone technologies and noise reduction algorithms. Trens In Amplification 8(3), 83–124 (2004)CrossRefGoogle Scholar
  2. 2.
    Kates, J.M.: Feedback cancellation in hearing aids: results from a computer simulation. IEEE Trans. on Speech and audio Processing 39(3), 553–562 (1991)Google Scholar
  3. 3.
    Joson, H.A.L., Asano, F., Toshio, Y.S.S.: Adaptive feedback cancellation with frequency compresion for hearing aids. J. Acoust. Society of America 94(6), 3248–3254 (1993)CrossRefGoogle Scholar
  4. 4.
    Siqueira, M., Alwan, A.: Steady-state analysis of continuous adaptation in acoustic feedback reduction systems for hearing-aids. IEEE Trans. on speech and audio processing 8(4), 443–453 (2000)CrossRefGoogle Scholar
  5. 5.
    Kates, J.M.: Constrained adaptation for feedback cancellation in hearing aids. J. Acoust. Society of America 106(2), 1010–1019 (1999)CrossRefGoogle Scholar
  6. 6.
    Benesty, J., Huang, Y.: Adaptive Signal Processing: Applications to Real-World Problems. Springer, New York (2003)zbMATHGoogle Scholar
  7. 7.
    Ljung, L.: System identification, theory for the user. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  8. 8.
    Hellgren, J., Forssell, U.: Bias of feedback cancellation algorithms in hearing aids based on direct closed loop identification. IEEE Trans. Speech and audio processing 9(7), 906–913 (2001)CrossRefGoogle Scholar
  9. 9.
    Spriet, A.I., Proudler, M., Wouters, J.: Adaptive feedback cancellation in hearing aids with linear prediction of the desired signal. IEEE Trans. on Signal processing 53(10), 3749–3763 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Mboup, M.B., Bershad, N.: Lms coupled adaptive prediction and system identification: a statistical model and transient mean analysis. IEEE Transaccion Signal Processing 42(10), 2607–2615 (1994)CrossRefGoogle Scholar
  11. 11.
    Ho, K.C., Blunt, S.D.: Rapid identification of a sparse impulse response using an adaptive algorithm in the haar domain. IEEE Trans. on Signal Processing 51(3), 628–638 (2003)MathSciNetGoogle Scholar
  12. 12.
    Minkoff, J.: Comment: On the unnecessary assumption of statistical independence between reference signal and filter weights in feedforward adaptive systems. IEEE Trans. on Signal Processing 49(5), 1109 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yasmín Montenegro M.
    • 1
  • José C. M. Bermudez
    • 2
  1. 1.University of AntofagastaChile
  2. 2.Federal University of Santa CatarinaBrazil

Personalised recommendations