Dynamic Color Texture Modeling and Color Video Decomposition Using Bounded Variation and Oscillatory Functions

  • Mathieu Lugiez
  • Michel Ménard
  • Abdallah El-Hamidi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)

Abstract

Dynamic, or temporal, texture is a spatially repetitive, time-varying visual pattern that forms an image sequence with a certain temporal stationarity. Important tasks are thus the detection, segmentation and perceptual characterization of Dynamic Texture (DT). Following recent work, color image decomposition appears as a good way to reach these different aims, however, to our best knowledge, no proposed model is currently able to deal with temporal aspect, inherent to color image sequences.

The major contribution of this paper is to adapt static decomposition model to time aspect in order to deal with videos and color image sequences. In this paper we propose an extended decomposition model which splits a video into two components, a first one containing geometrical information, the structure of the sequence and a second one dynamic color texture and noise. Examples for color video decomposition and characterization of real dynamic present in texture component will be presented.

Keywords

Color Image Bounded Variation Texture Component Decomposition Model Oscillatory Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Processing 14(10), 1570–1582 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Aujol, J.F., Aubert, G., Feraud, L.B., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. Journal of Mathematical Imaging and Vision 22(1), 71–88 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Aujol, J.F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition - modeling, algorithms, and parameter selection. International Journal of Computer Vision 67(1), 111–136 (2006)CrossRefGoogle Scholar
  4. 4.
    Aujol, J.F., Chambolle, A.: Dual norms and image decomposition models. International Journal of Computer Vision 63(1), 85–104 (2005)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Aujol, J.F., Kang, S.H.: Color image decomposition and restoration. J. Visual Communication and Image Representation 17(4), 916–928 (2006)CrossRefGoogle Scholar
  6. 6.
    Vese, L.A., Osher, S.J.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Computing 19, 553–572 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Vese, L.A., Osher, S.J.: Image denoising and decomposition with total variation minimization and oscillatory functions. Journal of Mathematical Imaging and Vision 20(1-2), 7–18 (2004)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Vese, L.A., Osher, S.: Color texture modeling and color image decomposition in a variational-PDE approach. In: SYNASC, pp. 103–110. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  9. 9.
    Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22, American Mathematical Society, Providence, RI, The fifteenth Dean Jacqueline B. Lewis memorial lectures (2001)Google Scholar
  10. 10.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)Google Scholar
  11. 11.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Applied Mathematical Sciences, vol. 147. Springer, Heidelberg (2006)MATHGoogle Scholar
  12. 12.
    Péteri, R., Huskies, M., Fazekas., S.: Dyntex: A comprehensive database of dynamic textures (2005), http://www.cwi.nl/projects/dyntex/
  13. 13.
    Lugiez, M., Ménard, M., El-Hamidi, A.: Spatiotemporal extension of color decomposition model and dynamic color structure-texture extraction (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mathieu Lugiez
    • 1
    • 3
  • Michel Ménard
    • 1
    • 3
  • Abdallah El-Hamidi
    • 2
    • 3
  1. 1.L3i - Université de La Rochelle 
  2. 2.MIA - Université de La Rochelle 
  3. 3.Fédération PRIDES: Pôle régional de Recherche en Images, Données et Systèmes 

Personalised recommendations