SVM-Based Face Recognition Using Genetic Search for Frequency-Feature Subset Selection

  • Aouatif Amine
  • Mohammed Rziza
  • Driss Aboutajdine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)


The goal of this paper is to study if there is a dependency between a selected feature vector at each generation of the genetic algorithm and the resulting fitness. In order to see the relation between these parameters, we first use Discrete Cosine Transforms (DCT) to transform each image as a feature vector (i.e., Frequency Feature Subset (FFS)). A Genetic Algorithm (GA) is then used to select a subset of features from the low-dimensional representation by removing certain DCT coefficients that do not seem to encode important information about recognition task. When using SVM, two problems are confronted: how to choose the optimal input feature subset for SVM, and how to set the best kernel parameters. Therefore, obtaining the optimal feature subset and SVM parameters must occur simultaneously. We present a genetic algorithm approach for feature selection and parameters optimization to solve this kind of problem.

mots clef-

Face recognition Feature Selection Genetic Algorithm Support Vector Machine Discrete Cosine Transform 


  1. 1.
    Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of the IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  2. 2.
    Koller, D., Sahami, M.: Towards optimal feature selection. In: ICML 1996, Bari, Italy, pp. 87–95 (1996)Google Scholar
  3. 3.
    Brill, F., Brown, D., Martin, W.: Fast genetic selection of features for neural network classifers. IEEE Transaction on Neural Networks 3(2), 324–328 (1992)CrossRefGoogle Scholar
  4. 4.
    Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature selection for support vector machines. Advances in Neural Information Processing Systems (2000)Google Scholar
  5. 5.
    Jain, A.K., Zongker, D.: Feature selection: Evaluation, application, and small sample performance. IEEE Transaction on Pattern Analysis and Machine Intelligence 19(2), 153–158 (1997)CrossRefGoogle Scholar
  6. 6.
    Devijverand, P.A., Kittler, J.: PatternRecognition:AStatisticalApproach. Prentice Hall, Lodon (1982)Google Scholar
  7. 7.
    Ahmed, N., Natarajan, T., Rao, K.R.: Discrete Cosine Transform. IEEE Transactions Computers 23, 90–94 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Srinivas, M., Patnaik, L.: Genetic algorithms: A survey. IEEE Computer 27, 1726 (1994)Google Scholar
  9. 9.
    Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Proceedings of the 13th international conference on machine learning, San Francisco, CA, pp. 8290 (1998)Google Scholar
  10. 10.
    Burges, J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  11. 11.
    Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Transactions on Evolutionary Computation 4(2), 16417 (2000)CrossRefGoogle Scholar
  12. 12.
    Yang, J., Honavar, V.: Feature subset selection using a genetic algorithm. IEEE Intelligent Systems 13(2), 4449 (1998)Google Scholar
  13. 13.
    Friedman, J.: Another approach to polychotomous classification Technical report, Department of Statistics, Stanford University (1996)Google Scholar
  14. 14.
    Ekenel, H.K., Stiefelhagen, R.: Local Appearance based Face Recognition Using Discrete Cosine Transform. In: EUSIPCO 2005, Antalya, Turkey, vol. 23(7) (2005)Google Scholar
  15. 15.
    Goldberg, D.: Genetic Algorithms in Search,Optimization,andMachine Learning. Addison-Wesley, Reading (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aouatif Amine
    • 1
  • Mohammed Rziza
    • 1
  • Driss Aboutajdine
    • 1
  1. 1.GSCM-LRIT, Faculty of SciencesMohammed V UniversityRabatMorocco

Personalised recommendations