Comparison of Image Restoration Methods for Bioluminescence Imaging

  • Smaïl Akkoul
  • Roger Ledee
  • Remy Leconge
  • Christophe Leger
  • Rachid Harba
  • Sabrina Pesnel
  • Stéphanie Lerondel
  • Alain Lepape
  • Luis Vilcahuaman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5099)


Bioluminescence imaging is a recent modality to visualize biological effects, especially for small animals. However, the acquired images are degraded by diffusion and absorption phenomena from the tissue and by the acquisition system itself. In this paper, we use restoration methods to enhance the quality of bioluminescence images. We propose a model for image formation and an experimental determination of the PSF (Point Spread Function). Several restoration methods are compared on test images generated according to the model and on real data. This comparison is insured by using MSE (Mean Square Error) and two other quantitative criteria. Results showed that the statistical methods give more accurate restoration and are well adapted for Bioluminescence Imaging.


Restoration methods Bioluminescence Imaging acquisition models 


  1. 1.
    Beck, J.A., Lloy, S., Hafezparast, M., et al.: Genealogies of Mouse Inbred Strains. Nature Genetics 24, 23–25 (2000)CrossRefGoogle Scholar
  2. 2.
    Contag, C.H., Jenkins, D., Contag, P.R., Negrin, R.S.: Use of Reporter Genes for Optical Measurements of Neoplastic Disease In Vivo. Neoplasia 2, 41–52 (2002)CrossRefGoogle Scholar
  3. 3.
    Edinger, M., Cao, Y., et al.: Advancing Animal Models of Neoplasia through in Vivo Bioluminescence Imaging. European Journal of Cancer 38(16), 2128–2136 (2002)CrossRefGoogle Scholar
  4. 4.
    Greer, L.F., Szalay, A.A.: Imaging of Light Emission from the Expression of Luciferases in Living Cells and Organisms: A Review. Luminescence 17(1), 43–74 (2002)CrossRefGoogle Scholar
  5. 5.
    Roda, A., Pasini, P., Mirasoli, M., Michelini, E., Guardigli, M.: Biotechnological Applications of Bioluminescence and Chemiluminescence. Trends in Biotechnology 22(6) (2004)Google Scholar
  6. 6.
    Rice, B.W., Cable, M.D., Nelson, M.B.: In Vivo Imaging of Light-Emitting Probes. Journal of Biomedical Optics 6(4), 432–440 (2001)CrossRefGoogle Scholar
  7. 7.
    Sadikot, R.T., Blackwell, T.S.: Bioluminescence Imaging. Proceedings of the American Thoracic Society 2, 537–540 (2005)CrossRefGoogle Scholar
  8. 8.
    Rehemtulla, A., Stegman, L.D., et al.: Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging. Neoplasia 2(6), 491–495 (2000)CrossRefGoogle Scholar
  9. 9.
    Snyder, D.L., Hammoud, A.M., White, R.L.: Image Recovery from Data Acquired with a Charge Coupled Device Camera. Journal of Optical Society of America 10(5), 1014–1023 (1993)CrossRefGoogle Scholar
  10. 10.
    Banham, M.R., Aggelos, A., Kastaggelos, K.: Digital Image Restoration. IEEE Signal Processing Magazine 14(2), 24–41 (1997)CrossRefGoogle Scholar
  11. 11.
    Prakash Dhawan, A., et al.: Image Restoration by Wiener Deconvolution in Limited-View Computed Tomography. Applied Optics, Journal of Optical Society of America 24(23) (1985)Google Scholar
  12. 12.
    Kundur, D., Hatzinakos, D.: Blind Image Deconvolution Revisited. IEEE Transactions on Signal Magazine 13(13), 61–63 (1996)CrossRefGoogle Scholar
  13. 13.
    Van Kempen, G.M.P., et al.: A Quantitative Comparison of Image Restoration Methods for Confocal Microscopy. Journal of Microscopy 185(3), 354–365 (1997)CrossRefGoogle Scholar
  14. 14.
    Webb, S., Long, A., Ott, R.J., Leach, M.O., Flower, M.A.: Constrained Deconvolution of SPECT Liver Tomograms by Direct Digital Image Restoration. Medical Physics 12(1), 53–58 (1985)CrossRefGoogle Scholar
  15. 15.
    Biemond, J., Lagendijk, R.L., Merseau, R.M.: Iterative Methods for Image Deblurring. Proceedings of the IEEE 78(5), 856–883 (1990)CrossRefGoogle Scholar
  16. 16.
    Richardson, W.H.: Bayesian-Based Iterative Method of Image Restoration. Journal Optical Society of America 62(1), 55–59 (1972)CrossRefGoogle Scholar
  17. 17.
    Mignotte, M., Meunier, J.: Three-Dimensional Blind Deconvolution of SPECT Images. IEEE Transactions on Biomedical Engineering 47(2), 274–280 (2000)CrossRefGoogle Scholar
  18. 18.
    Shepp, L.A., Vardi, Y.: Maximum Likelihood reconstruction for emission tomography. IEEE Transactions on Medical Imaging 1, 113–122 (1982)CrossRefGoogle Scholar
  19. 19.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data Via the EM Algorithm (With Discussion). Journal of the Royal Statistical Society 39(1), 1–38 (1977)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Lantéri, H., Theys, C.: Restoration of Astrophysical Images - The Case of Poisson Data with Additive Gaussian Noise. EURASIP Journal on Applied Signal Processing 2005(15), 2500–2513 (2005)CrossRefGoogle Scholar
  21. 21.
    Katsaggelo, A.K.: Iterative Image restoration Algorithms. Optical engineering 28(7), 735–748 (1989)Google Scholar
  22. 22.
    Rooms, F., et al.: PSF estimation with application in auto focus and image restoration. In: IEEE Signal Processing Symposium, Leuven, Belgium (2002)Google Scholar
  23. 23.
    Sarder, P., Nehorai, A.: Deconvolution Methods for 3-D Fluorescence Microscopy Images. IEEE Signal Processing Magazine 23(3), 32–45 (2006)CrossRefGoogle Scholar
  24. 24.
    Du, H., Voss, K.J.: Effects of Point-Spread Function on Calibration and Radiometric Accuracy of CCD Camera. Journal of Optical Society of America 43(3), 665–670 (2004)Google Scholar
  25. 25.
    Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in Astronomy: a Review. Astronomical Society of the Pacific 114, 1051–1069 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Smaïl Akkoul
    • 1
  • Roger Ledee
    • 1
  • Remy Leconge
    • 1
  • Christophe Leger
    • 1
  • Rachid Harba
    • 1
  • Sabrina Pesnel
    • 2
  • Stéphanie Lerondel
    • 2
  • Alain Lepape
    • 2
  • Luis Vilcahuaman
    • 3
  1. 1.Institut PRISMEUniversité d’OrléansORLEANS CEDEX 2
  2. 2.Centre d’Imagerie du Petit Animal, CIPA-CNRS, UPR n°44
  3. 3.Facultad de Ciencias e IngenieriaPontificia Universidad Catolica del PeruLimaPERU

Personalised recommendations