Tuning the Magnetic and Electronic Properties of Manganite Thin Films by Epitaxial Strain

  • G. H. Aydogdu
  • Y. Kuru
  • H. -U. Habermeier
Part of the Springer Proceedings in Physics book series (SPPHY, volume 122)


Electrical and magnetic properties of manganites are governed by a delicate balance between several mechanisms such as charge, orbital, and spin ordering superimposed to lattice effect that can cause mesoscopic phase separation. Manganites have generally a rich phase diagram, and their properties are very sensitive to external perturbations (e.g., electrical and magnetic fields, X-ray illumination, hydrostatic pressure, and epitaxial strain), which can cause phase separation at a given temperature. The growing interest in the manganites, in both, bulk and thin film form, is due to their possible device applications and, particularly, the new physics, based on strong electron–electron interaction. The observed peculiarities like colossal magnetoresistance (CMR) and metal to insulator (MI) transitions may serve as examples. In this work, first an overview about the general properties of manganites, important mechanisms controlling phase separation, and some of the key observations about the modification of electrical and magnetic properties by external effects is given. Subsequently, the consequence of epitaxial strain is elaborated in more detail and results regarding the epitaxial La0.5Ca0.5MnO3(LCMO) thin films, grown on planar (100), (111) SrTiO3(STO), (001) SrLaGaO4(SLGO) substrates by pulsed laser deposition technique (PLD), are presented.


Pulse Laser Deposition Spin Glass Colossal Magnetoresistance Pulse Laser Deposition Technique Epitaxial Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Goodenough, Rep. Prog. Phys. 67, 1915-1993 (2004)CrossRefADSGoogle Scholar
  2. 2.
    R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331-2333 (1993)CrossRefADSGoogle Scholar
  3. 3.
    S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413-415 (1994)CrossRefADSGoogle Scholar
  4. 4.
    S.S.P. Parkin, Annu. Rev. Mater. Sci. 25, 357-358 (1995)CrossRefADSGoogle Scholar
  5. 5.
    A.P. Ramirez, J. Phys. Condens. Matter. 9, 8171-8199 (1997)CrossRefADSGoogle Scholar
  6. 6.
    C.N.R. Rao, A.K. Cheetham, R. Mahesh, Chem. Matter. 8, 2421-2432 (1996)CrossRefGoogle Scholar
  7. 7.
    M.B. Salamon, M. Jaime, Rev. of Mod. Phys. 73, 583-628 (2001)CrossRefADSGoogle Scholar
  8. 8.
    S.W. Cheong, H.Y. Hwang, Ferromagnetism vs charge orbital ordering in mixed valent manganites in colossal magnetoresistance oxides, (Gordon and Breach, London, 1999)Google Scholar
  9. 9.
    C. Zener, Phys. Rev. 82, 403-405 (1951)CrossRefADSGoogle Scholar
  10. 10.
    J.B. Goodenough, Phys. Rev. 100, 564-573 (1955)CrossRefADSGoogle Scholar
  11. 11.
    H.A. Jahn, E. Teller, Proc. R. Soc. London Ser. A 161, 220-235 (1937)zbMATHCrossRefADSGoogle Scholar
  12. 12.
    C.N.R. Rao, B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, (World Scientific, Singapore, 1998)Google Scholar
  13. 13.
    V.P. Pashchenko, S.S. Kucherenko, P.I. Polyakov, A.A. Shemyakov, V.P. Dyakonov, Low Temp. Phys. 27, 1010-1013 (2001)CrossRefADSGoogle Scholar
  14. 14.
    H. Yamamoto, T. Murakami, J. Sakai, S. Imai, Solid State Commun. 142, 28-31 (2007)Google Scholar
  15. 15.
    F.S. Razavi, G.V. Sudhakar Rao, H. Jalili, H.-U. Habermeier, Appl. Phys. Let. 88,174103-174106 (2006)CrossRefADSGoogle Scholar
  16. 16.
    T. Roch, S. Yaghoubzadeh, F.S. Razavi, B. Leibold, R. Praus, H.-U. Habermeier, Appl. Phys. A 67, 723-725 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Y. Tokura, Y. Tomioka, H. Kuwahara, A. Asamitsu, Y. Moritomo, M. Kasai, Physica C 263, 544-549 (1996)CrossRefADSGoogle Scholar
  18. 18.
    P.X. Zhang, J.B. Wang, G.Y. Zhang, H.-U. Habermeier, W.K. Lee, Physica C 364,656-658 (2001)CrossRefADSGoogle Scholar
  19. 19.
    D. Casa, B. Keimer, M. Zimmermann, J.P. Hill, H.-U. Habermeier, F.S. Razavi, Phys. Rev. B 64, 100404(R) (2001)Google Scholar
  20. 20.
    H.-U. Habermeier, Physica B 321, 9-17 (2002)CrossRefADSGoogle Scholar
  21. 21.
    H.-U. Habermeier, F.S. Razavi, R. Praus, G.M. Gross, Physica C 341, 777-778 (2000)CrossRefGoogle Scholar
  22. 22.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition Method (Wiley, New York, 1994)Google Scholar
  23. 23.
    Rodriguez-Carjaval, Fullprof. Abstracts of the Satellite Meeting on Powder Diffraction of the 15th Congress of the IUCr, Toulouse, France, 127-128 (1990)Google Scholar
  24. 24.
    J.C. Ludon, N.D. Mathur, P.A. Midgley, Nature 420, 797-800 (2002)CrossRefADSGoogle Scholar
  25. 25.
    M. Ohring, Materials Science of Thin Films Deposition and Structure (Academic Press, New Jersey, 2002)Google Scholar
  26. 26.
    M. Berkowski, J Alloy Comp 251, 1-6 (1997)CrossRefGoogle Scholar
  27. 27.
    P.M. Woodward, T. Vogt, D.E. Cox, A. Arulraj, C.N.R. Rao, P. Karen, A.K. Cheetham, Chem. Mater. 10, 3652-3665 (1998)CrossRefGoogle Scholar
  28. 28.
    J.F. Britten, Acta Crystallogr. C 51, 1975-1977 (1995)Google Scholar
  29. 29.
    G.H. Aydogdu, Y. Kuru, H.-U. Habermeier, Mat. Sci. Eng. B. preprint, 2007Google Scholar
  30. 30.
    Y.P. Lee, S.Y. Park, Y.H. Hyun, J.B. Kim, V.G. Prokhorov, V.A. Komashko, V.L. Svetchnikov, Phys. Rev. B 73, 224413-224421 (2006).CrossRefADSGoogle Scholar
  31. 31.
    P.A. Joy, P.S. Anil Kumar, S.K. Date, J. Phys. Condens. Matter 10, 11049-11054 (1998)CrossRefADSGoogle Scholar
  32. 32.
    S.K. Hasanain, W.H. Shah, A. Mumtaz, M. Nadeem, M.J. Akhtar, J. Magn. Magn. Mater. 271, 79-87 (2004)CrossRefADSGoogle Scholar
  33. 33.
    S.V. Trukhanov, J. Mater. Chem. 13, 347-352 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Khatua, P.K. Mishra, J. John, V.C. Sahni, J. Phys. 60, 499-503 (2003)Google Scholar
  35. 35.
    N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials, (Clarendon, Oxford, 1979)Google Scholar
  36. 36.
    P.K. Siwach, H.K. Singh, O.N. Srivastava, J. Phys. Condens. Matter. 18, 9783-9794 (2006).CrossRefADSGoogle Scholar
  37. 37.
    M. Viret, L. Ranno, J.M.D. Coey, J. Appl. Phys. 81, 4964-4966 (1997)CrossRefADSGoogle Scholar
  38. 38.
    H.D. Zhou, R.-K. Zheng, G. Li, S.-J. Feng, F. Liu, X.-J. Fan, X.-G. Li, Eur. Phys. J. B. 26, 467-471 (2002)ADSGoogle Scholar
  39. 39.
    X.J. Chen, S. Soltan, H. Zhang, H.-U. Habermeier, Phys. Rev. B. 65, 174402-174408 (2002)ADSGoogle Scholar
  40. H.-D. Zhou, G. Li, S.-J. Feng, Y. Liu, T. Qian, X.-J. Fan, X.-G. Li, Solid State Commun. 122, 507-510 (2002)Google Scholar
  41. 41.
    J. O’Donnell, M.S. Rzchowski, J.N. Eckstein, I. Bozovic, App. Phys. Lett. 72, 1175-1777 (1998)Google Scholar
  42. 42. Accessed 17 October 2007
  43. 43.
    A.J. Millis, T. Darling, A. Migliori, J. Appl. Phys. 83, 1588-1591 (1998)CrossRefADSGoogle Scholar
  44. 44.
    P. Dey, T.K. Nath, A. Taraphder, Appl. Phys. Lett. 91, 012511-012525 (2007)CrossRefADSGoogle Scholar
  45. 45.
    E. Dagotto, New J. Phys. 7, 67 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. H. Aydogdu
    • 1
  • Y. Kuru
    • 2
  • H. -U. Habermeier
    • 1
  1. 1.Max Planck Institute for Solid State ResearchStuttgartGermany
  2. 2.Max Planck Institute for Metals ResearchStuttgartGermany

Personalised recommendations