Skip to main content

Myocardial Motion and Strain Rate Analysis from Ultrasound Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3417))

Abstract

We present an optical flow-based algorithm to estimate heart wall motion from ultrasound sequences. The method exploits two ultrasound modalities, i.e., B-mode (grayscale data) and tissue Doppler (partial velocity measurements). We use a local affine velocity model to account for typical heart motions such as contraction/expansion and shear. The affine model parameters give also access to so-called strain rate parameters that describe local myocardial deformation such as wall thickening. The estimation of large motions is made possible through the use of a coarse-to-fine multi-scale strategy, which also adds robustness to the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Intl. J. Computer Vision 1, 321–332 (1988)

    Article  Google Scholar 

  2. Chalana, V., Linker, D., Haynor, D., Kim, Y.: A multiple active contour model for cardiac boundary detection on echocardiographic sequences. IEEE Trans. Med. Imag. 15, 290–298 (1996)

    Article  Google Scholar 

  3. Jacob, G., Noble, J., Behrenbruch, C., Kelion, A., Banning, A.: A shape-space-based approach to tracking myocardial borders and quantifying regional left-ventricular function applied in echocardiography. IEEE Trans. Med. Imag. 21, 226–238 (2002)

    Article  Google Scholar 

  4. Yeung, F., Levinson, S., Fu, D., Parker, K.: Feature-adaptive motion tracking of ultrasound image sequences using a deformable mesh. IEEE Trans. Med. Imag. 17, 945–956 (1998)

    Article  Google Scholar 

  5. Ledesma-Carbayo, M., Kybic, J., Desco, M., Santos, A., Unser, M.: Cardiac motion analysis from ultrasound sequences using non-rigid registration. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 889–896. Springer, Heidelberg (2001)

    Google Scholar 

  6. Horn, B., Schunk, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  7. Mailloux, G., Langlois, F., Simard, P., Bertrand, M.: Restoration of the velocity field of the heart from two-dimensional echocardiograms. IEEE Trans. Med. Imag. 8, 143–153 (1989)

    Article  Google Scholar 

  8. Zini, G., Sarti, A., Lamberti, C.: Application of continuum theory and multi-grid methods to motion evaluation from 3D echocardiography. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 44, 297–308 (1997)

    Article  Google Scholar 

  9. Baraldi, P., Sarti, A., Lamberti, C., Prandini, A., Sgallari, F.: Evaluation of differential optical flow techniques on synthesized echo images. IEEE Trans. Biomed. Eng. 43, 259–272 (1996)

    Article  Google Scholar 

  10. Sühling, M.: Myocardial Motion and Deformation Analysis from Echocardiograms. EPFL thesis no. 3049 (2004), p.181, Swiss Federal Institute of Technology Lausanne (EPFL) (2004)

    Google Scholar 

  11. Chunke, Y., Terada, K., Oe, S.: Motion analysis of echocardiograph using optical flow method. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 672–677. IEEE, Los Alamitos (1996)

    Google Scholar 

  12. Hunziker, P., Picard, M., Jander, N., Scherrer-Crosbie, M., Pfisterer, M., Buser, P.: Regional wall motion assessment in stress echocardiography by tissue Doppler bull’s-eyes. J. Am. Soc. Echocardiography 12, 196–202 (1999)

    Article  Google Scholar 

  13. Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Processing Mag. 16, 22–38 (1999)

    Article  Google Scholar 

  14. Mühlich, M., Mester, R.: The role of total least squares in motion analysis. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 305–321. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Mota, C., Stuke, I., Aach, T., Barth, E.: Divide-and-conquer strategies for estimating multiple transparent motions. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 66–77. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Schnörr, C.: Variational methods for fluid flow estimation. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 124–145. Springer, Heidelberg (2007)

    Google Scholar 

  17. Sühling, M., Arigovindan, M., Hunziker, P., Unser, M.: Multiresolution moment filters: Theory and applications. IEEE Trans. Image Processing 13, 484–495 (2004)

    Article  Google Scholar 

  18. Unser, M., Aldroubi, A., Eden, M.: The L2-polynomial spline pyramid. IEEE Trans. Pattern Anal. Machine Intell. 15, 364–379 (1993)

    Article  Google Scholar 

  19. D’hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F., Hatle, L., Suetens, P., Sutherland, G.R.: Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. European Journal of Echocardiography 1, 154–170 (2000)

    Article  Google Scholar 

  20. Fleming, A., Xia, X., McDicken, W., Sutherland, G., Fenn, L.: Myocardial velocity gradients detected by doppler imaging system. British J. Radiology 67, 679–688 (1994)

    Article  Google Scholar 

  21. Uematsu, M., Miyatake, K., Tanaka, N., Matsuda, H., Sano, A., Yamazaki, N., Hirama, M., Yamagishi, M.: Myocardial velocity gradient as a new indicator of regional left ventricular contraction: detection by a two-dimensional tissue doppler imaging technique. J. Am. Coll. Cardiology 26, 217–223 (1995)

    Article  Google Scholar 

  22. Feistauer, M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 67. Longman Scientific & Technical, Harlow (1993)

    MATH  Google Scholar 

  23. Bertrand, M., Meunier, J.: Ultrasonic texture motion analysis: theory and simulation. IEEE Trans. Med. Imag. 14, 293–300 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernd Jähne Rudolf Mester Erhardt Barth Hanno Scharr

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sühling, M., Arigovindan, M., Jansen, C., Hunziker, P., Unser, M. (2007). Myocardial Motion and Strain Rate Analysis from Ultrasound Sequences. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds) Complex Motion. IWCM 2004. Lecture Notes in Computer Science, vol 3417. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69866-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69866-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69864-7

  • Online ISBN: 978-3-540-69866-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics