Skip to main content

Pseudo-Random Bit Generation Based on 2D Chaotic Maps of Logistic Type and Its Applications in Chaotic Cryptography

  • Conference paper
Computational Science and Its Applications – ICCSA 2008 (ICCSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5073))

Included in the following conference series:

Abstract

Pseudo-Random Bit Generation (PRBG) is required in many aspects of cryptography as well as in other applications of modern security engineering. In this work, PRBG based on 2D symmetrical chaotic mappings of logistic type is considered. The sequences generated with a chaotic PRBG of this type, are statistically tested and the computational effectiveness of the generator is estimated. Considering this PRBG valid for cryptography, the size of the available key space is also calculated. Different cryptographic applications can be suitable to this PRBG, being a stream cipher probably the most immediate of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, R.: Security Engineering, A Guide to Build Dependable Distributed Systems. John Wiley and Sons Inc., New York (2001), http://www.cl.cam.ac.uk/~rja14/book.html

    Google Scholar 

  2. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Florida (1997)

    MATH  Google Scholar 

  3. NIST Special Publication 800-22: A Statistical Test Suite for the Validation of Random Number Generators and Pseudo Random Number Generators for Cryptographic Applications (2001)

    Google Scholar 

  4. Marsaglia, G.: The diehard test suite (1995), http://stat.fsu.edu/geo/diehard.html

  5. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley Longman Publishing Co., Massachusetts (1997)

    Google Scholar 

  6. Li, S.: Analyses and New Designs of Digital Chaotic Ciphers. PhD thesis, School of Electronic and Information Engineering, Xi’an Jiaotong University (2003)

    Google Scholar 

  7. Stojanovski, T., Kocarev, L.: Chaos based Random Number Generators. Part I: Analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 43, 281–288 (2001)

    Article  MathSciNet  Google Scholar 

  8. Protopopescu, V.A., Santoro, R.T., Tollover, J.S.: Fast secure encryption-decryption method based on chaotic dynamics. US Patent No. 5479513 (1995)

    Google Scholar 

  9. Kocarev, L., Jakimoski, G.: Pseudorandom Bits Generated by Chaotic Maps. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 50(1), 123–126 (2003)

    Article  MathSciNet  Google Scholar 

  10. Madhekar, S.: Cryptographic Pseudo-Random Sequences from the Chaotic Hénon Map, http://arxiv.org/abs/cs/0604018

  11. Hénon, M.: A two-dimensional mapping with a strange attractor. Communications in Mathematical Physics 50, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lopez-Ruiz, R., Pérez-Garcia, C.: Dynamics of Maps with a Global Multiplicative Coupling. Chaos, Solitons and Fractals 1, 511–528 (1991)

    Article  MATH  Google Scholar 

  13. Alvarez, G., Li, S.: Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems. International Journal of Bifurcation and Chaos 16, 2129–2151 (2006)

    Article  MathSciNet  Google Scholar 

  14. Po-Han, L., Soo-Chang, P., Yih-Yuh, C.: Generating chaotic stream ciphers using chaotic systems. Chinese Journal of Physics 41, 559–581 (2003)

    Google Scholar 

  15. Li, S., Mou, X., Cai, Y.: Pseudo-random bit generator based on couple chaotic systems and its application in stream-ciphers cryptography. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 316–329. Springer, Heidelberg (2001)

    Google Scholar 

  16. Bogdan, C., Chargé, P., Fournier-Purnaret, D.: Behaviour of chaotic sequences under a finite representation and its cryptographic applications. In: IEEE Workshop on Nonlinear Maps and Applications (NOMA), Toulouse (2007)

    Google Scholar 

  17. Guckenheimer, J.M., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, Heidelberg (1983)

    Google Scholar 

  18. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos 15, 3119–3151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Falcioni, M., Palatella, L., Pigolotti, S., Vulpiani, A.: Properties making a chaotic system a good pseudo random number generator. Physical Review E 016220 (2005)

    Google Scholar 

  20. Kocarev, L.: Chaos-based Cryptography: a brief overview. IEEE Circuits and Systems Magazine 1, 6–21 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Osvaldo Gervasi Beniamino Murgante Antonio Laganà David Taniar Youngsong Mun Marina L. Gavrilova

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pellicer-Lostao, C., López-Ruiz, R. (2008). Pseudo-Random Bit Generation Based on 2D Chaotic Maps of Logistic Type and Its Applications in Chaotic Cryptography. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds) Computational Science and Its Applications – ICCSA 2008. ICCSA 2008. Lecture Notes in Computer Science, vol 5073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69848-7_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69848-7_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69840-1

  • Online ISBN: 978-3-540-69848-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics