Blasco, J., Cubero, S., Arias, R., Gómez, J., Juste, F., Moltó., E.: Development of a computer vision system for the automatic quality grading of mandarin segments. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 460–466. Springer, Heidelberg (2007)
CrossRef
Google Scholar
Blasco, J., Aleixos, N., Moltó, E.: Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering 81(3), 535–543 (2007)
CrossRef
Google Scholar
Blasco, J., Aleixos, N., Gómez-Sanchis, J., Moltó, E.: Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering 83(3), 384–393 (2007)
CrossRef
Google Scholar
Chang, C.I.: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer, New York (2003)
Google Scholar
Chen, R.K., Yang, C.M.: Estimating rice growth using ground-based hyperspectral reflectance data and simulated SPOT broad band data. Journal of Agricultural Research of China 51(4), 1–18 (2002)
Google Scholar
Martínez-Sotoca, J., Plá, F.: Hyperspectral Data Selection from Mutual Information Between Image Bands. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 853–861. Springer, Heidelberg (2006)
CrossRef
Google Scholar
Yang, C., Everitt, J.H., Bradford, J.M.: Airborne hyperspectral imagery and yield monitor data for estimating grain sorghum yield variability. Transactions of the ASAE 47(3), 915–924 (2004)
MATH
Google Scholar
Yao, H., Tian, L.: A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction. IEEE Transactions on Geoscience and Remote Sensing 41(6), 1469–1478 (2006)
Google Scholar
Steingberg, P., Colla, P.: CART. Classification and Regression Trees. Salford Systems. San Diego (1997)
Google Scholar
Gómez-Chova, L., Calpe, J., Soria, E., Camps-Valls, G., Martín, J.D., Moreno, J.: CART-based feature selection of hyperspectral images for crop cover classification. In: ICIP Proceedings of the International Conference on Image Processing, vol. 3, pp. 589–592 (2003)
Google Scholar
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley-Interscience, New York (2000)
Google Scholar
Bajksy, P., Kooper, R.: Prediction accuracy of color imagery from hyperspectral imagery (last accessed January 2008),
http://algdocs.ncsa.uiuc.edu/PB-20050328-2.pdf
Gómez-Sanchis, J., Moltó, E., Camps-Valls, G., Gómez-Chova, L., Aleixos, N., Blasco, J.: Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits. Journal of Food Engineering 85(2), 191–200 (2008)
CrossRef
Google Scholar
Blum, A.V., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97, 245–271 (1997)
CrossRef
MathSciNet
MATH
Google Scholar
Kohavi, R., John, G.H.: Wrappers for features subset selection. Artificial Intelligence 97, 273–324 (1997)
CrossRef
MATH
Google Scholar
Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston (1989)
MATH
Google Scholar
Breiman, L., Friedman, J., Olshen, R., Stone, J.: Classification and regression trees. CRC Press, Boca Raton (1998)
Google Scholar