The Evolution of the Coral–Algal Symbiosis

Part of the Ecological Studies book series (ECOLSTUD, volume 205)


The fossil record chronicles the rise, fall, and recovery of reefs. It is a sobering record because of the longevity of post-extinction global reef gaps and the length of time before reef recovery. Intervals when reefs are either entirely absent or greatly reduced range from 1×106 years to as much as 10×106 years in duration. The length of time for recovery has implications for the current environmental crisis. Put into the perspective of the current biotic marine crisis, the implications are bleak for the future evolution of reefs. Although evolution is not predictable, the derivation of meaningful estimates on diversity trends and rates of recovery following mass extinctions, are emerging from the fossil record. A study of the role of zooxanthellate photosymbiosis in the geologic past may provide new insights into both successes and failures on living coral reefs. The integration of biology and the fossil record offers potentials to better understand the current coral reef problems, including the bleaching phenomenon.


  1. Backhouse J, Balme BE, Helby R, Marshall N, Morgan R (2002) Palynological zonation and correlation of the latest Triassic, northern Carnarvon Basin. In: Keep M, Moss SJ (eds) The sedimentary basins of western Australia. Proc Pet Explor Soc Aust Symp 2002:179–201Google Scholar
  2. Beauvais L (1984) Evolution and diversification of Jurassic Scleractinia. Paleontogr Am 54:219–224Google Scholar
  3. Brenner W (1992) First results of Late Triassic palynology of the Wombat Plateau, northwestern Australia. Proc Ocean Drill Prog Sci Res 122:413–426Google Scholar
  4. Bucefalo Palliani R, Riding JB (1997) Umbriadinium mediterraneense gen. et sp. nov. and Valvaeodinium hirsutum sp. nov.; two dinoflagellate cysts from the lower jurassic of the Tethyan realm. Palynology 21:197–206Google Scholar
  5. Bucefalo Palliani R, Riding JB (2000) Subdivision of the dinoflagellate cyst family Suessiaceae and discussion of its evolution. J Micropalaeontol 19:133–137Google Scholar
  6. Bucefalo Palliani R, Riding JB (2003) Umbriadinium and Polarella: an example of selectivity in the dinoflagellate fossil record. Grana 42:108–111Google Scholar
  7. Cairns, SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322Google Scholar
  8. Carlson DB, Goreau TJ, Marshall AT (1996) Calcification rates in corals. Science 274:117–118CrossRefGoogle Scholar
  9. Coates AG, Jackson JBD (1987) Clonal growth, algal symbiosis and reef formation by corals. Paleobiology 13:363–378Google Scholar
  10. Copper P (1989) Enigmas in Phanerozoic reef development. Mem Assoc Australas Paleontol 8:371–385Google Scholar
  11. Copper P (2002) Silurian and Devonian reefs: 80 million years of global greenhouse between two ice ages. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 181–238Google Scholar
  12. Cowen R (1983) Algal symbiosis and its recognition in the fossil record. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York, pp 431–478Google Scholar
  13. Cowen R (1988) The role of algal symbiosis in reefs through time. Palaios 3:221–227CrossRefGoogle Scholar
  14. Cuif JP, Dauphin Y, Freiwald A, Gautret P, Zibrowius H (1999) Biochemical markers of zooxan-thellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol A 123:269–278CrossRefGoogle Scholar
  15. Erwin D (2006) Extinction: how life on earth nearly ended 250 million years ago. Princeton University Press, PrincetonGoogle Scholar
  16. Fautin DG, Buddemeier RW (2004) Adaptive bleaching: a general phenomenon. Hydrobiologia 530/531:495–509CrossRefGoogle Scholar
  17. Fensome RA, Saldarriaga JF, Taylor FJR (1999) Dinoflagellate phylogeny revisited: reconciling morphological and molecular based phylogenies. Grana 38:66–80Google Scholar
  18. Fine M, Tchernov D (2007) Scleractinian corals survive and recover from decalcification. Science 317:1811CrossRefGoogle Scholar
  19. Flügel E (2002) Triassic reef patterns. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 391–463Google Scholar
  20. Flügel E, Senowbari-Daryan B (2001) Triassic reefs of the Tethys. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 217–249Google Scholar
  21. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  22. Goreau TJ, Goreau NI (1959) The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:127–167CrossRefGoogle Scholar
  23. Goreau TJ, Goreau NI, Trench RK, Hayes RL (1996) Calcification rates in corals. Science 274:117CrossRefGoogle Scholar
  24. Goulet TL (2006) Most corals may not change their symbionts. Mar Ecol Prog Ser 321:1–7CrossRefGoogle Scholar
  25. Hallam A, Goodfellow WD (1990) Facies and geochemical evidence bearing on the end-Triassic disappearance of the alpine reef system. Hist Biol 4:131–138CrossRefGoogle Scholar
  26. Hallock P (1997) Reefs and reef limestone in earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman and Hall, New York, pp 13–42Google Scholar
  27. Hallock P (2001) Coral reefs, carbonate sediments, nutrients, and global change. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 388–427Google Scholar
  28. Hochuli PA, Frank SM (2000) Palynology (dinoflagellate cysts, spore-pollen) and stratigraphy of the Lower Carnian Raibl Group in the eastern Swiss Alps. Ecol Geol Helv 93:429–443Google Scholar
  29. Hoegh-Guldberg O (2005) Low coral cover in a high CO2 world. J Geophys Res 110:1–11CrossRefGoogle Scholar
  30. Insalaco E (1996) Upper Jurassic microsolenid biostromes of northern and central Europe: facies and depositional environment. Palaeogeogr Palaeoclimatol Palaeoecol 121:169–194CrossRefGoogle Scholar
  31. Johnson CC, Sanders D, Kauffman EG, Hay WW (2001) Patterns and processes influencing upper Cretaceous reefs. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 549–585Google Scholar
  32. Kiessling W (2001) Paleoclimatic significance of Phanerozoic reefs. Geology 29:751–754CrossRefGoogle Scholar
  33. Kiessling W, Baron-Szabo RC (2004) Extinction and recovery patterns of scleractinian corals at the Cretaceous—Tertiary boundary. Palaeogeogr Palaeoclimatol Palaeoecol 214:195–223Google Scholar
  34. Kiessling W, Aragon E, Scasso R, Aberhan M, Kriwet J, Medina F, Fracchia D (2005) Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina). Facies 51:233–241CrossRefGoogle Scholar
  35. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  36. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene—Pliocene transition. Mol Biol Evol 22:570–581PubMedCrossRefGoogle Scholar
  37. Lehrmann DJ (1999) Early Triassic calcimicrobial mounds and bistromes of the Nanpanjiang Basin, south China. Geology 27:359–362CrossRefGoogle Scholar
  38. Leinfelder RR (2001) Jurassic reef ecosystems. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 251–309Google Scholar
  39. Lindström S, Erlström M (2006) The late Rhaetian transgression in southern Sweden: regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 241:339–372CrossRefGoogle Scholar
  40. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494PubMedCrossRefGoogle Scholar
  41. MacRae RA, Fensome RA, Williams GL (1996) Fossil dinoflagellate diversity, originations, and extinctions and their significance. Can J Bot 74:1687–1694CrossRefGoogle Scholar
  42. Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639CrossRefGoogle Scholar
  43. Medina M, Collins AG, Takaoka TL, Kuehl J V, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci USA 103:9096–9100PubMedCrossRefGoogle Scholar
  44. Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen, JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 36:449–457CrossRefGoogle Scholar
  45. Montresor MG, Procaccini G, Stoeker DK (1999) Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! J Phycol 35:186–197CrossRefGoogle Scholar
  46. Morbey SJ, Dunay RE (1978) Early Jurassic to Late Triassic dinoflagellate cysts and miospores. In: Thusu B (ed) Distribution of biostratigraphically diagnostic dinoflagellate cysts and miospores from the northwest European continental shelf and adjacent areas, vol 100. Continental Shelf Institute, London, pp 47–59Google Scholar
  47. Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopes (δ13C and δ15N ) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530PubMedCrossRefGoogle Scholar
  48. Myers N, Knoll AH (2001) The biotic crisis and the future of evolution. Proc Natl Acad Sci USA 98:5389–5392PubMedCrossRefGoogle Scholar
  49. Perrin C (2002) Tertiary: the emergence of modern reef ecosystems. In: Flügel E, Kiessling W, Golonka J (eds) Phanerozoic reef patterns. Soc Econ Paleontol Mineral, Tulsa, pp 587–621Google Scholar
  50. Riedel P (1991) Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen. Mitt Geol Bergbaustud Oesterr 7:97–118Google Scholar
  51. Rosen BR (2000) Algal symbiosis, and the collapse and recovery of reef communities: lazarus corals across the K-T boundary. In: Culver SJ, Rawson PF (eds) Biotic response to global change, vol 12. Cambridge University Press, Cambridge, pp 164–180Google Scholar
  52. Rosen BR, Turnšek D (1989) Extinction patterns and biogeography of scleractinian corals across the Cretaceous/tertiary boundary. Mem Assoc Australas Palaeontol 8:355–370Google Scholar
  53. Rosen BR, Aillud GS, Bosellini FR, Clack NJ, Insalaco E, Valldeperas FX, Wilson, MEJ (2000). Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity. Proc Int Coral Reef Symp 9-1:255–264Google Scholar
  54. Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417CrossRefGoogle Scholar
  55. Shaked Y, de Vargas C (2006) Pelagic photosymbiosis: rDNA assessment of diversity and evolution of dinoflagellate symbionts and planktonic fominiferal hosts. Mar Ecol Prog Ser 325:59–71CrossRefGoogle Scholar
  56. Smith DC, Douglas AE (1987) The biology of symbiosis. Arnold, LondonGoogle Scholar
  57. Stanley GD Jr (1981) The early history of scleractinian corals and its geologic consequences. Geology 9:507–511CrossRefGoogle Scholar
  58. Stanley GD Jr (1988) The history of early Mesozoic reef communities: a three-step process. Palaios 3:170–183CrossRefGoogle Scholar
  59. Stanley GD Jr (1992) Tropical reef ecosystems. In: Nierenberg WA (ed) Encyclopedia of earth system science, vol 4. Academic, New York, pp 375–388Google Scholar
  60. Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer/Plenum, New York, pp 1–39Google Scholar
  61. Stanley GD Jr (2003) The evolution of corals and their early history. Earth Sci Rev 60:195–225CrossRefGoogle Scholar
  62. Stanley GD Jr (2006) Photosymbiosis and the evolution of modern coral reefs. Science312:857–858PubMedCrossRefGoogle Scholar
  63. Stanley GD Jr (2007) Ocean acidification and scleractinian corals. Science 317:1032–1033PubMedCrossRefGoogle Scholar
  64. Stanley GD Jr, Fautin DF (2001) The origins of modern corals. Science 291:1913–1914PubMedCrossRefGoogle Scholar
  65. Stanley GD Jr, Swart PK (1995) Evolution of the coral—zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21:179–199Google Scholar
  66. Stanton RJ Jr (2006) Nutrient models for the development and location of ancient reefs. Geo Alp 3:191–206Google Scholar
  67. Statt M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scle-ractinian hosts – symbiosis, diversity and the effects of climate change. Perspect Plant Ecol Evol Syst 8:23–43CrossRefGoogle Scholar
  68. Stolarski J (2003) Three-dimensional micro- and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol 48:497–530Google Scholar
  69. Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80CrossRefGoogle Scholar
  70. Talent JA (1988) Organic reef-building: episodes of extinction and symbiosis? Senckenbergiana Lethaea 69:315–368Google Scholar
  71. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65:103–139CrossRefGoogle Scholar
  72. van de Schootbrugge B, Tremolada F, Bailey TR, Feist-Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End-triassic calcification crisis and blooms of organic-walled disaster species. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141CrossRefGoogle Scholar
  73. Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology, part F. Geological Society of America, Boulder, pp 328–444Google Scholar
  74. Wood R (1999) Reef evolution. Oxford University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Paleontology CenterThe University of MontanaMissoulaUSA
  2. 2.Insitute of GeosciencesInsitute of GeosciencesAltenhöferalleeGermany

Personalised recommendations