Skip to main content

The PCR Primer Design as a Metaheuristic Search Process

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2008 (ICAISC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5097))

Included in the following conference series:

Abstract

The Polymerase Chain Reaction process is a well-known technique for the in vitro amplification of a DNA sequence. The success of a PCR depends on several parameters particularly the primer sequences used. Since the design of a suitable pair of primer involves a reasonable number of variables, which can have a range of different values, computer programs are commonly used to assist this task. This paper approaches the design of a pair of primer sequences as a search process throughout the space defined by all possible primer sequence pairs, directed by an evaluation function that combines the many variables involved in a primer design; an experiment and its results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mullis, K.B., Faloona, F.: Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymology 155, 335–350 (1987)

    Article  Google Scholar 

  2. Metzker, M.L., Caskey, T.C.: Polymerase Chain Reaction (PCR), Encyclopedia of Life Science. Nature Publishing Group (2001)

    Google Scholar 

  3. Innis, M.A., Gelfand, D.H.: Optimization of PCRs. In: Innis, Gelfand, Sninsky, White (eds.) PCR Protocols. Academic Press, New York (1990)

    Google Scholar 

  4. Kamel, A., Abd-Elsalam: Bioinformatic tools and guideline for PCR primer design. African Journal of Biotechnology 2(5), 91–95 (2003)

    Google Scholar 

  5. Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L., Levenson, C., Sninsky, J.: Effects of primer-template mismatches on the polymerase chain reaction: Human Immunodeficiency Virus 1 model studies. Nucleic Acids Research 18, 999–1005 (1990)

    Article  Google Scholar 

  6. Wallace, R.B., Shaffer, J., Murphy, R.F., Bonner, J., Hirose, T., Itakura, K.: Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 DNA: the effect of single base pair mismatch. Nuclic Acids Research 6, 3543–3557 (1979)

    Article  Google Scholar 

  7. Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal of Molecular Biology 5, 109–118 (1962)

    Google Scholar 

  8. Howley, P.M., Israel, M.F., Law, M.-F., Martin, M.A.: A rapid method for detecting and mapping homology between heterologous DNAs. Journal of Biological Chemistry 254, 4876–4883 (1979)

    Google Scholar 

  9. Breslauer, K.J., Frank, R., Blocker, H., Marky, L.A.: Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986)

    Article  Google Scholar 

  10. Sugimoto, N., Nakano, S., Yoneyama, M., Honda, K.: Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Research 24, 4501–4505 (1996)

    Article  Google Scholar 

  11. SantaLucia Jr., J., Allawi, H.T., Seneviratne, P.A.: Improved Nearest-Neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996)

    Article  Google Scholar 

  12. Rychlik, W., Spencer, W.J., Rhoads, R.E.: Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research 18, 6409–6412 (1990)

    Article  Google Scholar 

  13. Kämpke, T., Kieninger, M., Mecklenbug, M.: Efficient primer design algorithms. Bioinformatics 17(3), 214–225 (2001)

    Article  Google Scholar 

  14. Panjkovich, A., Melo, F.: Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics 21(6), 711–722 (2005)

    Article  Google Scholar 

  15. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  16. He, Q., Marjamäki, M., Soini, H., Mertsola, J., Viljanen, M.K.: Primers are decisive for sensitivity of PCR. BioTechniques 17(1), 82–87 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leszek Rutkowski Ryszard Tadeusiewicz Lotfi A. Zadeh Jacek M. Zurada

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montera, L., Nicoletti, M.C. (2008). The PCR Primer Design as a Metaheuristic Search Process. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2008. ICAISC 2008. Lecture Notes in Computer Science(), vol 5097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69731-2_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69731-2_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69572-1

  • Online ISBN: 978-3-540-69731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics