Memetic Algorithm Based on a Constraint Satisfaction Technique for VRPTW

  • Marco A. Cruz-Chávez
  • Ocotlán Díaz-Parra
  • David Juárez-Romero
  • Martín G. Martínez-Rangel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5097)


In this paper a Memetic Algorithm (MA) is proposed for solving the Vehicles Routing Problem with Time Windows (VRPTW) multi-objective, using a constraint satisfaction heuristic that allows pruning of the search space to direct a search towards good solutions. An evolutionary heuristic is applied in order to establish the crossover and mutation between sub-routes. The results of MA demonstrate that the use of Constraints Satisfaction Technique permits MA to work more efficiently in the VRPTW.


Genetic Algorithm Short Path Local Search Constraint Satisfaction Constraint Satisfaction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitchell, M.: An Introduction to Genetic Algorithms. Massachusetts Institute of Technology Press, London (1999)Google Scholar
  2. 2.
    Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan (1975)Google Scholar
  3. 3.
    Alvarenga, G.B., Mateus, G.R., De Tomi, G.: A genetic and set partition two-phase approach for the vehicle routing problem with time Windows. Computers & Operations Research 34(6), 1561–1584 (2007)MATHCrossRefGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley Professional, Reading (1989)MATHGoogle Scholar
  5. 5.
    Krasnogor, N., Smith, J.: MAFRA a Java Memetic Algorithm Framework. Intelligent Computer System Centre University of the west of England Bristol, United Kingdom (2000)Google Scholar
  6. 6.
    Tavakkoli-Moghaddam, R., Saremi, A.R., Ziaee, M.S.: A memetic algorithm for a vehicle routing problem with backhauls. Applied Mathematics and Computation 181, 1049–1060 (2006)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent Computation Program, Report. 826, California Institute of technology,Pasadena, California, USA (1989)Google Scholar
  8. 8.
    Cheng-Chung, C., Smith, S.F.: A Constraint Satisfaction Approach to Makespan Scheduling. In: Proceedings of the Third International Conference on Artificial Intelligence Planning Systems, Edinburgh, Scotland, pp. 45–52 (1996) ISBN 0-929280-97-0Google Scholar
  9. 9.
    Solomon, M.M.: Algorithms for vehicle routing and scheduling problems with time window constraints. Operations Research 35(2) (1987)Google Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and intractability, A Guide to the theory of NP-Completeness. W.H. Freeman and Company, New York (2003)Google Scholar
  11. 11.
    Toth, P., Vigo, D.: The Vehicle Routing Problem. In: Monographs on Discrete Mathematics and Applications, SIAM, Philadelphia (2001)Google Scholar
  12. 12.
    Thangiah, S.R.: Vehicle Routing with Time Windows using Genetic Algorithms. In: Chambers, L. (ed.) Application Handbook of Genetic Algorithms: New Frontiers, vol. 2, pp. 253–277. CRC Press, Boca Raton (1995)Google Scholar
  13. 13.
    Tan, K.C., Lee, L.H., Zhu, Q.L., Ou, K.: Heuristics methods for vehicle routing problem with time windows. In: Artificial Intelligence in Engineering, pp. 281–295. Elsevier, Amsterdam (2001)Google Scholar
  14. 14.
    Zhu, K.Q.: A new Algorithm for VRPTW. In: Proceedings of the International Conference on Artificial Intelligence ICAI 2000, Las Vegas. USA (2000)Google Scholar
  15. 15.
    Prins, C.: A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research 31(12) (2004) 1985-2004Google Scholar
  16. 16.
    Tan, K.C., Lee, L.H., Ou, K.: Artificial intelligence heuristics in solving vehicle routing problems with time windows constraints. Engineering Applications of Artificial Intelligence 14(6), 825–837 (2001)CrossRefGoogle Scholar
  17. 17.
    Rhalibi, E.A., Kelleher, G.: An approach to dynamic vehicle routing, rescheduling and disruption metrics. IEEE International Conference on Systems, Man and Cybernetics 4, 3613–3618 (2003)Google Scholar
  18. 18.
    Chin, A., Kit, H., Lim, A.: A new GA approach for the vehicle routing problem. In: Proceedings 11th IEEE International Conference on Tools with Artificial Intelligence, pp. 307–310 (1999)Google Scholar
  19. 19.
    Tan, K.C., Lee, T.H., Chew, Y.H., Lee, L.H.: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 1361–1366 (2003)Google Scholar
  20. 20.
    Castillo, L., Borrajo, D., Salido, M.A.: Planning, Scheduling and Constraint Satisfaction: From Theory to Practice (Frontiers in Artificial Intelligence and Applications), IOS Press, ISBN-10: 1586034847, ISBN-13: 978-1586034849. Spain (2005)Google Scholar
  21. 21.
    Cruz-Chávez, M.A., Díaz-Parra, O., Hernández, J.A., Zavala-Díaz, J.C., Martínez-Rangel, M.G.: Search Algorithm for the Constraint Satisfaction Problem of VRPTW. In: Proceeding of CERMA 2007, September 25-28, pp. 336–341. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  22. 22.
    Aho, A.V., Hopcroft, J.E., Ulllman, J.D.: Structure of data and algorithms. Adisson-Wesley Iberoamericana, Nueva Jersey, Nueva York, California, U.S.A (1988) (Spanish)Google Scholar
  23. 23.
    Wagner, S., Affenzeller, M.: The HeuristicLab Optimization Environment, Technical Report. Institute of Formal Models and Verification, Johannes Kepler University Linz, Austria (2004)Google Scholar
  24. 24.
    Affenzeller, M.: A Generic Evolutionary Computation Approach Based Upon Genetic Algorithms and Evolution Strategies. Journal of Systems Science 28(2), 59–72 (2002)Google Scholar
  25. 25.
    Chafekar, D., Xuan, J., Rasheed, K.: Constrained Multi-objective Optimization Using Steady State Genetic Algorithms, Computer Science Departament University of Georgia. In: Athens, Genetic and Evolutionary Computation Conference, GA 30602, USA (2003)Google Scholar
  26. 26.
    Wagner, S., Affenzeller, M.: SexualGA: Gender-Specifc Selection for Genetic Algorithms. In: Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2005), vol. 4, pp. 76–81 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marco A. Cruz-Chávez
    • 1
  • Ocotlán Díaz-Parra
    • 1
  • David Juárez-Romero
    • 1
  • Martín G. Martínez-Rangel
    • 2
  1. 1.CIICAp 
  2. 2.FCAeIAutonomous University of Morelos StateCuernavacaMexico

Personalised recommendations