Skip to main content

Regulation of the Cell Cycle by the Ubiquitin Pathway

  • Chapter
Book cover Cell Cycle Control

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 22))

Abstract

Ubiquitin-mediated proteolysis is a major mechanism of regulation of cellular processes in which speed, specificity and timing are critical. Degradation of key substrates by the ubiquitin pathway controls cell cycle progression, circadian rhythms, cell fate commitment in development, signal transduction pathways, and immune responses (see Hochstrasser 1995 for review).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amon A (1997) Regulation of B-type cyclin proteolysis by CDC28-associated kinases in budding yeast. EMBO J 16: 2693–2702.

    Article  PubMed  CAS  Google Scholar 

  • Amon A, Irniger S, Nasmyth K (1994) Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77: 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  • Aristarkhov A, Eytan E, Moghe A, Adorn A, Hershko A, Ruderman J (1996) E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc Natl Acad Sci USA 93: 4294–4299.

    Article  PubMed  CAS  Google Scholar 

  • Bai C, Sen P, Hofman K, Ma L, Goebel M, Harper W, Elledge S (1996) Skpl connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Baker R, Tobias JW, Varshavsky A (1992) Ubiquitin-specific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem 267: 23364–23375.

    PubMed  CAS  Google Scholar 

  • Barrai Y, Jentsch S, Mann C (1995) G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev 9: 399–409.

    Article  Google Scholar 

  • Basi G, Draetta G (1995) pl3Sucl of Schizosaccharomyces pombe regulates two distinct forms of the mitotic cdc2 kinase. Mol Cell Biol 15: 2028–2036.

    PubMed  CAS  Google Scholar 

  • Brandeis M, Hunt T (1996) The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J 15: 5280–5289.

    PubMed  CAS  Google Scholar 

  • Buckley MF, Sweeney KJE, Hamilton JA, Sini RL, Manning DL, Nicholson RI, deFazio A, Watts CKW, A, ME, Sutherland RL (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8: 2127–2133.

    PubMed  CAS  Google Scholar 

  • Catzavelos C, Bhattacharya N, Ung Y, Wilson J, Roncari L, Sandhu C, Shaw P, Yeger H, Morava-Protzner I, Kapusta L, Franssen E, Pritchard K, Slingerland J (1997) Decreased levels of the cell-cycle inhibitor p27KiP1 protein: prognostic implications in primary breast cancer. Nature Med 3: 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Clurman B, Sheaff R, Thress K, Groudine M, Roberts J (1996) Turnover of cyclin E by the ubiquitinproteasome pathway is regulated by CDK2 binding and cyclin phosphorylation. Genes Dev. 10: 1979–1990.

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Fix O, Peters J, Kirschner M, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10: 3081–3093.

    Article  PubMed  CAS  Google Scholar 

  • Connelley C, Hieter P (1996) Budding yeast Skpl is an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86: 275–285.

    Article  Google Scholar 

  • Dawson I, Roth S, Artavanis-Tsakonas S (1995) The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene ofSaccharomyces cerevisiae. J Cell Biol 129: 725–737.

    Article  PubMed  CAS  Google Scholar 

  • DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma C-P, Afendis J, Swaffield JC, Slaughter CA (1994) PA700, an ATP-dependent activator of the 20S proteasome, is an ATPase containing multiple members of a nucleotide binding family. J Biol Chem 269: 20878–20884.

    PubMed  CAS  Google Scholar 

  • Deshaies RJ, Chau V, Kirschner MW (1995) Ubiquitination of the Gl cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J 14: 303–312.

    PubMed  CAS  Google Scholar 

  • Diehl JA, Zindy F, Sherr C (1997) Inhibition of cyclin D1 phosphorylation on threonine 286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11: 957–972.

    Article  PubMed  CAS  Google Scholar 

  • Dirick L, Bohm T, Nasmith K (1995) Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccaromiches Cerevisiae. EMBO J 14: 4803–4813.

    PubMed  CAS  Google Scholar 

  • Draetta G, Luca F, Westendorf J, Brizuela L, Ruderman J, Beach D (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56: 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Drury L, Perkins G, Diffley J (1997) The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16: 5566–5576.

    Article  Google Scholar 

  • Epstein C, Cross F (1992) CLNB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6: 1695–1706.

    Article  PubMed  CAS  Google Scholar 

  • Esposito V, Baldi A, DeLuca A, Sgaramella G, Giordano GG, Caputi M, Baldi F, Pagano M, Giordano A (1997) Prognostic role of the cell cycle inhibitor p27 in non-small cell lung cancer. Cancer Res 57: 3381–3385.

    PubMed  CAS  Google Scholar 

  • Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skplp, and Cdc53p/Cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91: 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Kumada K, Yanagida M (1996a) Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J 15: 6617–6628.

    PubMed  CAS  Google Scholar 

  • Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996b) Cut2 proteolysis required for sister-chromatid separation in fission yeast. Nature 381: 438–441.

    Article  PubMed  CAS  Google Scholar 

  • Gallant P, Nigg E (1992) Cyclin B2 undergoes cell cycle dependent nuclear translocation and, when expressed as a non destructable mutant, causes mitotic arrest in HeLa cells. J Cell Biol 117: 213–224.

    Article  PubMed  CAS  Google Scholar 

  • Glotzer M, Murray A, Kirschner M (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349: 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Goebl M, Goetsch L, Byers B (1994) The Ubc3 (Cdc34) ubiquitin-conjugating enzyme Is ubiquitinated and phosphorylated in vivo. Mol Cell Biol 14: 3022–3029.

    PubMed  CAS  Google Scholar 

  • Hareford L, Hartwell L (1974) Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J Mol Biol 84: 445–461.

    Article  Google Scholar 

  • Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206–8214.

    PubMed  CAS  Google Scholar 

  • Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen L, Luca F, Ruderman J, Eytan E (1994) Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem 269: 4940–4946.

    PubMed  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Op in Cell Biol. 7: 215–223.

    Article  CAS  Google Scholar 

  • Holloway S, Glotzer M, King R, Murray A (1993) Anaphase is initiated by proteolysis rather than by inactivation of maturation-promoting factor. Cell 73: 1393–1402.

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Pines J (1994) Cyclins and Cancer II. Cyclin D and CDK inhibitors come of age. Cell 79: 573–582.

    Article  PubMed  CAS  Google Scholar 

  • Irniger S, Nasmyth K (1997) The anaphase-promoting complex is required in G1 arrested yeast cells to inhibit B-type cyclin accumulation and to prevent uncontrolled entry into S-phase. J. Cell Sci. 110: 1523–1531.

    PubMed  CAS  Google Scholar 

  • Irniger S, Piatti S, Michaelis C, Nasmyth K (1995) Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81: 269–278.

    Article  PubMed  CAS  Google Scholar 

  • Ishii K, Kumada K, Toda T, Yanagida M (1996) Requirement for PP1 phosphatase and 20S cyclosome/APC for the onset of anaphase is lessened by the dosage increase of a novel gene sds23+. EMBO J 15: 6629–6640.

    PubMed  CAS  Google Scholar 

  • Izumi T, Mailer J (1991) Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions. Mol Cell Biol 11: 3860–3867.

    PubMed  CAS  Google Scholar 

  • Jentsch S (1992) The ubiquitin-conjugation system. Annu Rev Genet 26: 179–207.

    Article  PubMed  CAS  Google Scholar 

  • Juang Y, Huang J, Peters JM, McLaughlin M, Tai C, Pellman D (1997) APC-mediated proteolysis of Asel and the morphogenesis of the mitotic spindle. Science 275: 1311–1314.

    Article  PubMed  CAS  Google Scholar 

  • Keyomarsi K, Conte D Jr, Toyofuku W, Fox MP (1995) Deregulation of cyclin E in breast cancer. Oncogene 11: 941–950.

    PubMed  CAS  Google Scholar 

  • King R, Peters J, Tugendreich S, Rolfe M, Hieter P, Kirschner M (1995) A 20S complex containing Cdc27 and Cdc16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • King R, Deshaies R, Peters J, Kirschner M (1996a) How proteolysis drives the cell cycle. Science 274: 1652–1659.

    Article  PubMed  CAS  Google Scholar 

  • King R, Glotzer M, Kirschner M (1996b) Mutagenic analysis of the destruction signal for mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell 7: 1343–1357.

    PubMed  CAS  Google Scholar 

  • Kipreos ET, Lander L, Wing J, He W, Hedgecock E (1996) cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85: 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Kominami K, Toda T (1997) Fission yeast WD-repeat protein Pop-1 regulates genome ploidy through ubiquitin-proteasome-mediated degradation of the CDK inhibitor Rum-1 and the S-phase initiator Cdc18. Genes Dev 11: 1548–1560.

    Article  PubMed  CAS  Google Scholar 

  • Kornitzer D, Raboy B, Kulka R, Fink G (1994) Regulated degradation of the transcription factor Gcn4. EMBO J 13: 6021–6030.

    PubMed  CAS  Google Scholar 

  • Lahav-Baratz S, Sudakin V, Ruderman J, Hershko A (1995) Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl. Acad. Sci.USA 92: 9303–9308.

    Article  PubMed  CAS  Google Scholar 

  • Lamb J, Michaud W, Sikorski R, Hieter P (1994) Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J 13: 4321–4328.

    PubMed  CAS  Google Scholar 

  • Lanker S, Valdivieso M, Wittenberg C (1996) Rapid degradation of the G1 cyclin Cln2 indudec by CDK-dependent phosphorylation. Science 271: 1597–1601.

    Article  PubMed  CAS  Google Scholar 

  • Li J, Meyer A, Donoghue D (1995) Requirement for phosphorylation of cyclin B1 for Xenopus oocyte maturation. Mol Biol Cell 6: 1111–1124.

    PubMed  CAS  Google Scholar 

  • Loda M, Cukor B, Tarn S, Lavin P, Fiorentino M, Draetta G, Jessup J, Pagano M (1997) Increased proteasome-dependent degradation of teh cyclin-dependent kinase inhibitor p27 inaggressive colorectal carcinomas. Nature Med 3: 231–234.

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at a 3.4 Å resolution. Science 268: 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Luca FC, Ruderman JV (1989) Control of programmed cyclin destruction in a cell-free system. J Cell Biol 109: 1895–1909.

    Article  PubMed  CAS  Google Scholar 

  • Luca FC, Shibuya E, Dohrmann C, Ruderman J (1991) Both cyclin A Æ60 and BÆ97 are stable and arrest cells in M-phase, but only cyclin B Æ97 turns on cyclin destruction. EMBO J 10: 4311–4320.

    PubMed  CAS  Google Scholar 

  • Ma C-P, Vu JH, Proske RJ, Slaughter JA, DeMartino GN (1994) Identification, purification, and characterization of a high molecular weight, ATP-dependent activator (PA700) of the 20S proteasome. J Biol Chem 269: 3539–3547.

    CAS  Google Scholar 

  • Mathias N, Johnson S, Winey M, Adams A, Goetsch L, Pringle J, Byers B, Goebl M (1996) Cdc53p acts in concert with cdc4 and cdc34 to control the G1 phase transition and identifies a conserved family of proteins. Mol Cell Biol 16: 6634–6643.

    PubMed  CAS  Google Scholar 

  • McKinney J, Chang F, Heintz N, Cross FR (1993) Negative regulation of FAR1 at the start of the yeast cell cycle. Genes Dev 7: 833–843.

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall M (1993) An inhibitor of p34cdc28 protein kinase activity from Saccharomyces cerevisiae. Science 259: 216–219.

    Article  PubMed  CAS  Google Scholar 

  • Multiple Authors (1996) Six reviews on the cell cycle. Science 274: 1643–1677.

    Article  Google Scholar 

  • Murray AW, Solomon MJ, Kirschner MW (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339: 280–286.

    Article  PubMed  CAS  Google Scholar 

  • Ning F, Johnston M (1997) Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J 16: 5629–5638.

    Article  Google Scholar 

  • Osaka F, Seino H, Seno T, Yamao F (1997) A ubiquitin-conjugating enzyme in fission yeast that is essential for the onset of anaphase in mitosis. Mol Cell Biol 17: 3388–3397.

    PubMed  CAS  Google Scholar 

  • Pagano M, Tarn SW, Theodoras AM, Beer P, Delsal G, Chau V, Yew R, Draetta G, Rolfe M (1995) Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.

    Article  PubMed  CAS  Google Scholar 

  • Papa F, Hochstrasser M (1993) The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366: 313–319.

    Article  PubMed  CAS  Google Scholar 

  • Patra D, Dunphy W (1996) Xe-p9, a Xenopus Suc1.Cks homolog, has multiple essential roles in cell cycle control. Genes Dev 10: 1503–1515.

    Article  PubMed  CAS  Google Scholar 

  • Pause A, Lee S, Worrel R, Chen D, Burgess W, Linehan M, Klausner R (1997) The von Hippel-Lindau tumor suppressor gene product forms a stable complex with human Cul2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U.S.A. 94: 2156–2161.

    Article  PubMed  CAS  Google Scholar 

  • Peters J-M, Franke WW, Kleinschmidt JA (1994) Distinct 19S and 20S subcomplexes of the 26S proteasome and their distribution in the nucleus and cytoplasm. J Biol Chem 269: 7709–7718.

    PubMed  CAS  Google Scholar 

  • Peters J, King R, Hoog C, Kirschner M (1996) Identification of BIME as a subunit of the anaphasepromoting complex. Science 274: 1199–1201.

    Article  PubMed  CAS  Google Scholar 

  • Piatti S, Bohm T, Cocker J, Diffley J, Nasmyth K (1996) Activation of S-phase-promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev 10: 1516–1531.

    Article  PubMed  CAS  Google Scholar 

  • Pines J (1996) Reaching a role for the Cks proteins. Curr Biol 11: 1399–1402.

    Article  Google Scholar 

  • Plon S, Leppig K, Do H, Groudine M (1993) Cloning of the human homolog of the CDC34 cell cycle gene by complementation in yeast. Proc Natl Acad Sci USA 90: 10484–10488.

    Article  PubMed  CAS  Google Scholar 

  • Porter P, Malone K, Heagerty P, Alexander G, Gatti L, Firpo EJ, Daling J, Roberts J (1997) Expression of cell-cycle regulators p27Kipl and Cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Med 3: 222–225.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe M, Chiu I, Pagano M (1997) The ubiquitin-mediated proteolytic pathway as a therapeutic area. J Mol Med 75: 5–17.

    Article  PubMed  CAS  Google Scholar 

  • Rubin D, Finley D (1995) The proteasome: a protein-degrading organelle? Curr Biol 5: 854–858.

    Article  PubMed  CAS  Google Scholar 

  • Schneider B, Ying Q, Futcher B (1996) Linkage of replication to start by the CDK inhibitor sicl. Science 272: 560–562.

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Böhm T, Mendenhall M, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40sic1 controls the G1 to S transition in S. cerevisiae. Cell 79: 233–244.

    Article  PubMed  CAS  Google Scholar 

  • Schwob E, Nasmyth K (1993) CLB5 and CLB6, a new pair of B type cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7: 1160–1175.

    Article  PubMed  CAS  Google Scholar 

  • Seufert W, Futcher B, Jentsch S (1995) Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins. Nature 373: 78–81.

    Article  PubMed  CAS  Google Scholar 

  • Sheaff R, Groudine M, Gordon M, Roberts J, Clurman B (1997) Cyclin E-CDK2 is a regulator of p27KiP1 Genes Dev 11: 1464–1478.

    Article  PubMed  CAS  Google Scholar 

  • Sherr C (1994) Gl phase progression: cycling on cue. Cell 79: 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Sherr C (1996) Cancer cell cycles. Science 274: 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  • Sigrist S, Jacobs H, Stratmann R, Lehner C (1995) Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBO J 14: 4827–4838.

    PubMed  CAS  Google Scholar 

  • Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91: 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Stankovic T, Byrd PJ, Cooper PR, McConville CM, Munroe DJ, Riley JH, Watts GDJ, Ambrose H, McGuire G, Smith AD, Sutcliffe A, Mills T, Taylor AMR (1997) Construction of a transcription map around the gene for ataxia-telangiectasia; identification of at least four novel genes. Genomics 40: 267–276.

    Article  PubMed  CAS  Google Scholar 

  • Stemmann O, Lechner J (1996) The Saccharomyces cerevisiae kinetochore contains a cyclin-CDK complexing homologue, as identified by in vitro reconstitution. EMBO J 15: 3611–3620.

    PubMed  CAS  Google Scholar 

  • Stewart E, Kobayashi H, Harrison D, Hunt T (1994) Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. EMBO J 13: 584–594.

    PubMed  CAS  Google Scholar 

  • Stilman B (1996) Cell cycle control of DNA replication. Science 274: 1659–1664.

    Article  Google Scholar 

  • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca F, Ruderman J, Hershko A (1995) The cyclosome, a large complex containing cyclin selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185–198.

    PubMed  CAS  Google Scholar 

  • Sudakin V, Shteinberg M, Ganoth D, Hershko J, Hershko A (1997) Binding of activated Cyclosome to p13Suc1. J Biol Chem 272: 18051–1859.

    Article  PubMed  CAS  Google Scholar 

  • Tan P, Cady B, Wanner M, Worland P, Cukor B, Fiorentino M, Magi-Galluzzi C, Lavin P, Pagano M, Loda M (1997) The cell cycle inhibitor p27 is an independent prognostic marker in small (Tla, b) invasive breast carcinomas. Cancer Res 57: 1259–1263.

    PubMed  CAS  Google Scholar 

  • Toyn J, Johnston L (1994) The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition. EMBO J 13: 1103–1113.

    PubMed  CAS  Google Scholar 

  • Tugendreich S, Tomkiel J, Earnshaw W, Hieter P (1995) Cdc27Hs colocalizes with Cdcl6Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Tyers M (1996) The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc Natl Acad Sci USA 93: 7772–7776.

    Article  PubMed  CAS  Google Scholar 

  • van der Velden H, Lohka M (1994) Cell cycle-regulated degradation ofXenopus cyclin B2 requires binding to p34cdc2. Mol Biol Cell 5: 713–724.

    PubMed  Google Scholar 

  • Verma R, Annan R, Huddleston M, Carr S, Reynard G, Deshaies RJ (1997a) Phosphorylation of Sic1p by G1 cyclin/CDK is required for its degradation and entry into S phase. Science 278: 455–460.

    Article  PubMed  CAS  Google Scholar 

  • Verma R, Feldman RMR, Deshaies RJ (1997b) SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell 8: 1427–1437.

    PubMed  CAS  Google Scholar 

  • Vlach J, Hennecke S, Amati B (1997) Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27KiP1. EMBO J16: 5334–5344.

    Google Scholar 

  • Welker M, Lukas J, Strauss M, Bartek J (1996) Enhanced protein stability: a novel mechanism of D-type cyclin over-abundance identified in human sarcoma cells. Oncogene 13: 4191–4201.

    Google Scholar 

  • Willems A, Lanker S, Patton E, Craig K, Nason T, Mathias N, Kobayashi R, Wittenberg C, Tyers M (1996) Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86: 453–463.

    Article  PubMed  CAS  Google Scholar 

  • Won K, Reed S (1996) Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. EMBO J 15: 4182–4193.

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Guacci V, Koshland D (1996) Pdslp, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J Cell Biol 133: 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Yamano H, Gannon J, Hunt T (1996) The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J 15: 5266–5279.

    Google Scholar 

  • Yamashita Y, Nakaseko Y, Samejima I, Kumada K, Yamada H, Michaelson D, Yanagida M (1996) 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature 384: 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Yew R, Kirschner MW (1997) Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277: 1672–1675.

    Article  PubMed  CAS  Google Scholar 

  • Yu H, King R, Peters J, Kirschner M (1996) Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr Biol 6: 455–466.

    Article  PubMed  CAS  Google Scholar 

  • Zachariae W, Shin T, Galova M, Obermaier B, Nasmyth K (1996) Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274: 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp-1 and p45Skp-2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82: 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang Z, Liu D, Pagano M, Ravid K (1997) Ubiquitin-dependent degradation of Cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slingerland, J., Pagano, M. (1998). Regulation of the Cell Cycle by the Ubiquitin Pathway. In: Pagano, M. (eds) Cell Cycle Control. Results and Problems in Cell Differentiation, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69686-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69686-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21695-8

  • Online ISBN: 978-3-540-69686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics