A New Paradigm for the Enactment and Dynamic Adaptation of Data-Driven Process Structures

  • Dominic Müller
  • Manfred Reichert
  • Joachim Herbst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5074)


Industry is increasingly demanding IT support for large engineering processes, i.e., process structures consisting of hundreds up to thousands of processes. Developing a car, for example, requires the coordination of development processes for hundreds of components. Each of these development processes itself comprises a number of interdependent processes for designing, testing, and releasing the respective component. Typically, the resulting process structure becomes very large and is characterized by a strong relation with the assembly of the product. Such process structures are denoted as data-driven. On the one hand, the strong linkage between data and processes can be utilized for automatically creating process structures. On the other hand, it is useful for (dynamically) adapting process structures at a high level of abstraction. This paper presents new techniques for (dynamically) adapting data-driven process structures. We discuss fundamental correctness criteria needed for (automatically) detecting and disallowing dynamic changes which would lead to an inconsistent runtime situation. Altogether, our COREPRO approach provides a new paradigm for changing data-driven process structures at runtime reducing costs of change significantly.


Process Coordination Data-driven Process Process Adaptation 


  1. 1.
    Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Management Processes in the Automotive Industry. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 131–147. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adaptive workflow systems. Distributed & Parallel Databases 16(1), 91–116 (2004)CrossRefGoogle Scholar
  5. 5.
    Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria For Dynamic Changes in Workflow Systems: A Survey. DKE 50(1), 9–34 (2004)CrossRefGoogle Scholar
  6. 6.
    W3C: WS-CDL 1.0 (2005)Google Scholar
  7. 7.
    Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies in DYCHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 273–290. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Aalst, W., Basten, T.: Inheritance of workflows: an approach to tackling problems related to change. Theoretical Computer Science 270(1-2), 125–203 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Rinderle, S., Reichert, M.: Data–Driven Process Control and Exception Handling in Process Management Systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 273–287. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. MIS 20(1), 229–262 (2003)Google Scholar
  11. 11.
    Aalst, W.: On the automatic generation of workflow processes based on product structures. Comput. Ind. 39(2), 97–111 (1999)CrossRefGoogle Scholar
  12. 12.
    Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case handling. In: GROUP, pp. 42–51 (2001)Google Scholar
  13. 13.
    Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior Using Business Artifacts. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Küster, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for Object Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kappel, G., Schrefl, M.: Object/behavior diagrams. In: ICDE, pp. 530–539 (1991)Google Scholar
  16. 16.
    Dori, D.: Object-process methodology as a business-process modelling tool. In: ECIS (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominic Müller
    • 1
    • 2
  • Manfred Reichert
    • 1
    • 3
  • Joachim Herbst
    • 2
  1. 1.Institute of Databases and Information SystemsUlm UniversityGermany
  2. 2.Dept. GR/EPDDaimler AG Group Research & Advanced EngineeringGermany
  3. 3.Information Systems GroupUniversity of TwenteThe Netherlands

Personalised recommendations