GATiB-CSCW, Medical Research Supported by a Service-Oriented Collaborative System

  • Konrad Stark
  • Jonas Schulte
  • Thorsten Hampel
  • Erich Schikuta
  • Kurt Zatloukal
  • Johann Eder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5074)


Medical research is a collaborative process in an interdisciplinary environment that may be effectively supported by a Computer Supported Cooperative Work (CSCW) system. Such a system imposes specific requirements in order to allow flexible integration of data, analysis services and communication mechanisms. Persons with different expertise and access rights cooperate in mutually influencing contexts (e.g. clinical studies, research cooperations). Thus, appropriate virtual environments are needed to facilitate context-aware communication, deployment of biomedical tools as well as data and knowledge sharing. We systematically elaborate the main requirements of a medical CSCW system and present a conceptual model, as well as an architectural proposal satisfying the demands. We design a prototypical virtual workbench to support research and routine activities in the context of the GATiB (Genome Austria Tissue Bank) initiative.


Medical Research CSCW Service-Oriented Architecture 


  1. 1.
    Armendolia, S.R., Estrella, F., McClathey, R., et al.: Managing pan-european mammography images and data using a service oriented architecture. In: IDEAS-Workshop on Medical Information Systems (2004)Google Scholar
  2. 2.
    Assel, M., Krammer, B., Loehden, A.: Management and access of biomedical data in a grid environment. In: Cracow Grid Workshop (2006)Google Scholar
  3. 3.
    Asslaber, M., Abuja, P., Stark, K., Eder, J.: The genome austria tissue bank (gatib). Pathobiology 74, 251–258 (2007)CrossRefGoogle Scholar
  4. 4.
    Bouillon, Y., Wendling, F., Bartolomei, F.: Computer-supported collaborative work (cscw) in biomedical signal visualization and processing. Trans. on Information Technology in Biomedicine 3 (1999)Google Scholar
  5. 5.
    Chu, X., Lonie, A., Harris, P., Thomas, S., Buyya, R.: A service-oriented grid environment for integration of distributed kidney models and resources. In: Concurrency and Computation: Practice and Experience (CCPE) (2007)Google Scholar
  6. 6.
    Arbona, A., et al.: A service-oriented grid infrastructure for biomedical data and compute services. IEEE Trans. on Nanobioscience 6 (2007)Google Scholar
  7. 7.
    GeneSpring. Cutting-edge tools for expression analysis,
  8. 8.
    Li, W., Krishnan, S., Mueller, K., Ichikawa, K., et al.: Building cyberinfrastructure for bioinformatics using service oriented architecture. In: Sixth IEEE Int. Symposium on Cluster Computing and the Grid Workshops (2006)Google Scholar
  9. 9.
    Makris, L., Kamilatos, I., Kopsacheilis, E.V., Strintzis, M.G.: Teleworks: A cscw application for remote medical diagnosis support and teleconsultation. Trans. on Information Technology in Biomedicine 2 (1998)Google Scholar
  10. 10.
    Sweeney, L., Samarati, P.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. In: Proc. of the IEEE Symposium on Research in Security and Privacy (1998)Google Scholar
  11. 11.
    Papazoglou, M.P.: Service -oriented computing: Concepts, characteristics and directions. In: wise, vol. 00, p. 3. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  12. 12.
    Sartipi, K., Yarmand, M., Down, D.: Mined-knowledge and decision support services in electronic health. In: Int. Workshop on Systems Development in SOA Environments (2007)Google Scholar
  13. 13.
    Schulte, J., Hampel, T., Bopp, T., Hinn, R.: Wasabi framework an open service infrastructure for collaborative work. In: The third Int. Conference on Semantics, Knowledge and Grid (2007)Google Scholar
  14. 14.
    Stark, K., Eder, J., Zatloukal, K.: Priority-Based k-Anonymity Accomplished by Weighted Generalisation Structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 394–404. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Sturn, A., Quackenbush, J., Trajanoski, Z.: Genesis: Cluster analysis of microarray data. Bioinformatics 18(1), 207–208 (2002)CrossRefGoogle Scholar
  16. 16.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. In: Proc. Natl. Acad. Sci., vol. 98 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Konrad Stark
    • 1
  • Jonas Schulte
    • 2
  • Thorsten Hampel
    • 2
  • Erich Schikuta
    • 1
  • Kurt Zatloukal
    • 4
  • Johann Eder
    • 1
    • 3
  1. 1.Dept. of Knowledge and Business EngineeringUniversity of ViennaAustria
  2. 2.Heinz Nixdorf InstituteUniversity of PaderbornGermany
  3. 3.Dept. of Informatics SystemsUniversity of KlagenfurtAustria
  4. 4.Institute of PathologyMedical University GrazAustria

Personalised recommendations