Skip to main content

Detecting Glaucoma Progression by Imaging

  • Chapter
Book cover Glaucoma

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • Measuring disease progression is vital in the management of patients with glaucoma and ocular hypertension.

  • Progression may be assessed by structure (optic disc photography or semi-automated imaging devices) and function (perimetry).

  • Progression strategies may be subdivided into “event analyses” (progression requires a predetermined threshold to be exceeded) and “trend analyses” (the behaviour of the parameter over time is monitored).

  • Stereophotographic examination is prone to high inter-observer variability.

  • Amongst imaging devices, the HRT has the most published longitudinal data, as it has been commercially available for the longest time and its software is “backward compatible”.

  • Two progression algorithms are currently available in the HRT software: “trend analysis” and “topographical change analysis”.

  • To date there are no statistically supported progression algorithms in the OCT or GDx-VCC operational software.

  • There is poor concordance between HRT and visual field progression. The reasons for this remain unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGIS Investigators (1994) Advanced glaucoma intervention study. 2. Visual field test scoring and reliability. Ophthalmology 101(8):1445–1455

    Google Scholar 

  2. Artes PH, Chauhan BC (2005) Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res 24(3):333–354

    Article  PubMed  Google Scholar 

  3. Azuara-Blanco A, Katz LJ, Spaeth GL et al. (2003) Clinical agreement among glaucoma experts in the detection of glaucomatous changes of the optic disk using simultaneous stereoscopic photographs. Am J Ophthalmol 136(5):949–950

    Article  PubMed  Google Scholar 

  4. Boes DA, Spaeth GL, Mills RP et al. (1996) Relative optic cup depth assessments using three stereo photograph viewing methods. J Glaucoma 5(1):9–14

    Article  PubMed  CAS  Google Scholar 

  5. Burk RO, Vihanninjoki K, Bartke T et al. (2000) Development of the standard reference plane for the Heidelberg retina tomograph. Graefes Arch Clin Exp Ophthalmol 238(5):375–384

    Article  PubMed  CAS  Google Scholar 

  6. Caprioli J, Prum B, Zeyen T (1996) Comparison of methods to evaluate the optic nerve head and nerve fiber layer for glaucomatous change. Am J Ophthalmol 121(6):659–667

    PubMed  CAS  Google Scholar 

  7. Chauhan BC (2005) Detection of glaucomatous changes in the optic disc. In: Fingeret M, Flanagan JG, Liebmann JM (eds) The essential HRT primer. Jocoto Advertising, San Ramon, CA

    Google Scholar 

  8. Chauhan BC, Blanchard JW, Hamilton DC et al. (2000) Technique for detecting serial topographic changes in the optic disc and peripapillary retina using scanning laser tomography. Invest Ophthalmol Vis Sci 41(3):775–782

    PubMed  CAS  Google Scholar 

  9. Chauhan BC, McCormick TA, Nicolela MT et al. (2001) Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch Ophthalmol 119(10):1492–1499

    PubMed  CAS  Google Scholar 

  10. Chen E, Gedda U, Landau I (2001) Thinning of the papillomacular bundle in the glaucomatous eye and its influence on the reference plane of the Heidelberg retinal tomography. J Glaucoma 10(5):386–389

    Article  PubMed  CAS  Google Scholar 

  11. Coleman AL, Sommer A, Enger C et al. (1996) Interobserver and intraobserver variability in the detection of glaucomatous progression of the optic disc. J Glaucoma 5(6):384–389

    PubMed  CAS  Google Scholar 

  12. Ervin JC, Lemij HG, Mills RP et al. (2002) Clinician change detection viewing longitudinal stereophotographs compared to confocal scanning laser tomography in the LSU Experimental Glaucoma (LEG) Study. Ophthalmology 109(3):467–481

    Article  PubMed  Google Scholar 

  13. Payers T, Strouthidis NG, Garway-Heath DF (2007) Monitoring glaucomatous progression using a novel Heidelberg Retina Tomograph event analysis. Ophthalmology 114(11):1973–1980

    Article  Google Scholar 

  14. Fitzke FW, Hitchings RA, Poinoosawmy D et al. (1996) Analysis of visual field progression in glaucoma. Br J Ophthalmol 80(1):40–48

    Article  PubMed  CAS  Google Scholar 

  15. Heijl A, Leske MC, Bengtsson B et al. (2003) Measuring visual field progression in the Early Manifest Glaucoma Trial. Acta Ophthalmol Scand 81(3):286–293

    Article  PubMed  Google Scholar 

  16. Heidelberg Engineering (2006) Heidelberg retina tomograph glaucoma module. Operating instructions software version 3.0. Heidelberg Engineering, Heidelberg, Germany

    Google Scholar 

  17. Kamal DS, Viswanathan AC, Garway-Heath DF et al. (1999) Detection of optic disc change with the Heidelberg retina tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br J Ophthalmol 83(3):290–294

    Article  PubMed  CAS  Google Scholar 

  18. Kamal DS, Garway-Heath DF, Hitchings RA et al. (2000) Use of sequential Heidelberg retina tomograph images to identify changes at the optic disc in ocular hypertensive patients at risk of developing glaucoma. Br J Ophthalmol 84(9)593–998

    Article  Google Scholar 

  19. Kourkoutas D, Buys YM, Flanagan JG et al. (2007) Comparison of glaucomaprogression evaluated with Heidelberg retina tomograph II versus optic nerve head stereophotographs. Can J Ophthalmol 42(1):82–88

    Article  PubMed  Google Scholar 

  20. Lichter PR (1977) Variability of expert observers in evaluating the optic disc. Trans Am Ophthalmol Soc 74:532–572

    Google Scholar 

  21. Medeiros FA, Doshi R, Zangwill LM et al. (2007) Long-term variability of GDx VCC retinal nerve fiber layer thickness measurements. J Glaucoma 16(3):277–281

    Article  PubMed  Google Scholar 

  22. Morgan JE, Sheen NJ, North RV et al. (2005) Digital imaging of the optic nerve head: monoscopic and stereoscopic analysis. Br J Ophthalmol 89(7):879–884

    Article  PubMed  CAS  Google Scholar 

  23. Musch DC, Lichter PR, Guire KE et al. (1999) The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients. Ophthalmology 106(4):653–662

    Article  PubMed  CAS  Google Scholar 

  24. Nicolela MT, McCormick TA, Drance SM et al. (2003) Visual field and optic disc progression in patients with different types of optic disc damage: a longitudinal prospective study. Ophthalmology 110(11):2178–2184

    Article  PubMed  Google Scholar 

  25. Owen MF, Strouthidis NG, Garway-Heath DF et al. (2006) Measurement variability in Heidelberg Retina Tomograph imaging of neuroretinal rim area. Invest Ophthalmol Vis Sci 47(12):5322–5330

    Article  PubMed  Google Scholar 

  26. Parrish RK, Schiffman JC, Feuer WJ et al. (2005) Test-retest reproducibility of optic disk deterioration detected from stereophotographs by masked graders. Am J Ophthalmol 140(4):762–764

    Article  PubMed  Google Scholar 

  27. Patterson AJ, Garway-Heath DF, Strouthidis NG et al. (2005) A new statistical approach for quantifying change in series of retinal and optic nerve head topography images. Invest Ophthalmol Vis Sci 46(5):1659–1667

    Article  PubMed  Google Scholar 

  28. Patterson AJ, Garway-Heath DF, Crabb DP (2006) Improving the repeatability of topographic height measurements in confocal scanning laser imaging using maximum-likelihood deconvolution. Invest Ophthalmol Vis Sci 47(10):4415–4421

    Article  PubMed  Google Scholar 

  29. Quigley HA, Katz J, Derick RJ et al. (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99(1):19–28

    PubMed  CAS  Google Scholar 

  30. Strouthidis NG, White ET, Owen VM et al. (2005) Factors affecting the test-retest variability of Heidelberg retina tomograph and Heidelberg retina tomograph II measurements. Br J Ophthalmol 89(11):1427–1432

    Article  PubMed  CAS  Google Scholar 

  31. Strouthidis NG, White ET, Owen VM et al. (2005) Improving the repeatability of Heidelberg retina tomograph and Heidelberg retina tomograph II rim area measurements. Br J Ophthalmol 89(11):1433–1437

    Article  PubMed  CAS  Google Scholar 

  32. Strouthidis NG, Scott A, Peter NM et al. (2006) Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement. Invest Ophthalmol Vis Sci 47(7):2904–2910

    Article  PubMed  Google Scholar 

  33. Tan JC, Hitchings RA (2003) Approach for identifying glaucomatous optic nerve progression by scanning laser tomography. Invest Ophthalmol Vis Sci 44(6):2621–2626

    Article  PubMed  Google Scholar 

  34. Tan JC, Hitchings RA (2004) Optimizing and validating an approach for identifying glaucomatous change in optic nerve topography. Invest Ophthalmol Vis Sci 45(5):1396–1403

    Article  PubMed  Google Scholar 

  35. Tan JC, Garway-Heath DF, Hitchings RA (2003) Variability across the optic nerve head in scanning laser tomography. Br J Ophthalmol 87(5):557–559

    Article  PubMed  CAS  Google Scholar 

  36. Wollstein G, Schuman JS, Price LL et al. (2005) Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol 123(4):464–470

    Article  PubMed  Google Scholar 

  37. Zeyen T, Miglior S, Pfeiffer N et al. (2003) Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology 110(2):340–344

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strouthidis, N.G., Garway-Heath, D.F. (2009). Detecting Glaucoma Progression by Imaging. In: Grehn, F., Stamper, R. (eds) Glaucoma. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69475-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69475-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69472-4

  • Online ISBN: 978-3-540-69475-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics