Skip to main content

Structure-Borne Sound, Insulation and Damping

  • Chapter
  • First Online:
Book cover Handbook of Engineering Acoustics

Abstract

In noise and vibration control, the most important tasks are the minimization of the excitation and of the propagation of sound in structures. Furthermore, the transfer from structure-borne sound into airborne sound – the vibration-induced radiation of sound – should be kept as low as possible.

In Memoriam G. Müller

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Loads above the values given in the table should not be chosen for rubber sheets bonded between steel plates.

  2. 2.

    Analogously for rotating movements the moment impedance can be defined as the relationship between the moment of excitation and the corresponding angular velocity.

  3. 3.

    In case additional masses are applied, a rigid connection has to be guaranteed. Glued or welded connections are recommended whereas screwed connections are mostly not sufficiently stiff at high frequencies.

  4. 4.

    The loss factor related with the (relatively unimportant) longitudinal waves in metal or compound plates with anti-drone coating are around 0.01–0.1 of the loss factor related with bending waves.

  5. 5.

    Under the given assumption and if the excitation is linked with a broadband punctual load \( \tilde{F} \)(effective value the input power can be calculated by: \( P = {\tilde{F}^2}{\rm Re} \left\{ {1/Z} \right\} \)), (see Table 9.3) is valid.

References

  1. Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, Amsterdam

    MATH  Google Scholar 

  2. Beltzer AI (1988) Acoustics of solids. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Auld BA (1973) Acoustics fields and waves in solids. Vol I a. II. Wiley, New York

    Google Scholar 

  4. Mason PM (ed) (1966) Physical acoustics, vol I–III. Academic, New York

    Google Scholar 

  5. Rausch E (1959) Maschinenfundamente und andere dynamisch beanspruchte Baukonstruktionen. VDI-Verlag, Düsseldorf, Ergänzungsband, 1968

    Google Scholar 

  6. Harris CM, Crede DE (eds) (1961) Shock and vibration handbook Vol 2, sect. 30-35. Mc-Graw-Hill, New York

    Google Scholar 

  7. Hartzt H (1937) Schwingungstechnische Gestaltungen von Maschinengründungen. Werner Genest, Berlin

    Google Scholar 

  8. (1979) Handbook of noise and vibration control. Sect. 3b, 3c, 4th edn. Trade and Technical Press, Morden, Surrey (England), 586–652

    Google Scholar 

  9. Hertz H (1882) Über die Berührung fester, elastischer Körper. J reine angew Math 92:156–171

    MATH  Google Scholar 

  10. Johnson KL (1985) Contact mechanics. Cambridge 93,220

    Google Scholar 

  11. Cremer L, Heckl M, Petersson BAT (2005) Structure borne sound. Springer, Berlin

    Book  Google Scholar 

  12. Ljunggren S (1984) Generation of waves in an elastic plate by a torsional moment and horizontal force. J Sound Vib 93:161–187

    Article  ADS  MATH  Google Scholar 

  13. Wöhle W (1984) Statistische Energieanalyse der Schalltransmission. Abschn. 1.10. In: Fasold/Kraak/Schirmer (Hrsg.) Taschenbuch Akustik. VEB Verlag Technik Berlin

    Google Scholar 

  14. Becker GW, Oberst H (1965) Über das dynamische Verhalten linearer, vernetzter und gefüllter Kunststoffe. Kolloid Z 148:6–16

    Google Scholar 

  15. Linhardt F, Oberst H (1961) Über die Temperaturabhängigkeit schwingungsdämpfender Kunststoffe. Acustica 11:255–264

    Google Scholar 

  16. Oberst H (1952) Über die Dämpfung der Biegeschwingungen dünner Bleche durch festhaftende Beläge. Acustica 2:181–194

    Google Scholar 

  17. Kerwin EM (1961) Damping of flexural waves in plates by spaced damping treatments having spaces of finite stiffness. In: Proc. 3rd ICA Congress. Elsevier, 412–415

    Google Scholar 

  18. Ross D, Ungar EE, Kerwin EM (1959) Damping of plate flexural vibrations by means of viscoelastic lamina. In: Ruzicke JE (ed) Structural damping. Amer Soc Mech Engineers

    Google Scholar 

  19. Kurtze G (1959) Bending wave propagation in multilayer plates. J Acoust Soc Am 31:1181–1201

    MathSciNet  ADS  Google Scholar 

  20. Tartakovskii BD, Rybak SA (1962) On vibration of layered plates with losses. 4th ICA Congress, Kopenhagen, Paper P43

    Google Scholar 

  21. Parfitt GG (1962) The effect of cuts in damping tapes. 4th ICA Congress, Kopenhagen, Paper P 21

    Google Scholar 

  22. Zeinetdinova RU, Naumkina NI, Tartakovskii BD (1978) Effectiveness of a vibration-absorbing coating with a cut constraining layer. Sov Phys Acoust 24:347–348

    Google Scholar 

  23. Maidanik G (1960) Energy dissipation associated with gas pumping at structural joints. J Acoust Soc Am 40:1064–1072

    Article  ADS  Google Scholar 

  24. Möser M (1980) Körperschalldämpfung durch Reibung in der zwischen zwei Platten befindlichen Luftschicht. Acustica 46:210–217

    Google Scholar 

  25. Mindlin RD, Dersiewicz M (1953) Elastic spheres in contact under oblique forces. Trans ASME Ser E J Appl Mech 20:327–335

    MATH  Google Scholar 

  26. Schober U (1990) Untersuchung der Körperschalldämpfung durch Fügestellen in Motoren. DAGA 90. DPG, Bad Honnef, 349–352

    Google Scholar 

  27. Schierling R (1984) Reibungsdämpfung in Konstruktionsfugen betrachtet an verschraubten Balkensystemen. Diss. TH Darmstadt

    Google Scholar 

  28. Gaul L (1981) Zur Dämmung und Dämpfung von Biegewellen an Fügestellen. Ing Arch 51:101–110

    Article  MATH  Google Scholar 

  29. Albrecht A, Möser M (1989) Die dämpfende Wirkung dicker Entdröhnschichten auf Platten. Z Lärmbekämpfung 36:73–79

    Google Scholar 

  30. Lyon RH, Maidanik G (1962) Power flow between linearly coupled oscillators. J Acoust Soc Am 34:623–639

    Article  ADS  Google Scholar 

  31. Scharton TO, Lyon RH (1968) Power flows and energy sharing in random vibration. J Acoust Soc Am 43:1332–1343

    Article  ADS  Google Scholar 

  32. Cremer L, Heckl M, Ungar ED (1973) Structure-borne sound. Kap. V, 8. Springer, Berlin

    Google Scholar 

  33. Heckl M (1985) Anwendung des Satzes von der wechselseitigen Energie. Acustica 58:111–117

    MATH  Google Scholar 

  34. ten Wolde T, Gadefelt GR (1987) Development of standard measurement methods for structure-borne sound emission. Noise Control Eng J 28:5–14

    Article  Google Scholar 

  35. Mondot JM, Petersson B (1987) Characterization of structure-borne sound sources: The source descriptor and the coupling function. J Sound Vib 114:507–518

    Article  ADS  Google Scholar 

  36. Trochidis A (1982) Körperschalldämpfung mittels Gas- oder Flüssigkeitsschichten. Acustica 51:201–212

    MATH  Google Scholar 

  37. Petuelli G (1983) Theoretische und experimentelle Bestimmung der Steifigkeits- und Dämpfungseigenschaften normalbelasteter Fügestellen. Diss. RWTH Aachen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Muller, G. (2013). Structure-Borne Sound, Insulation and Damping. In: Müller, G., Möser, M. (eds) Handbook of Engineering Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69460-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69460-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24052-5

  • Online ISBN: 978-3-540-69460-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics