Skip to main content

Silencers

  • Chapter
  • First Online:
Handbook of Engineering Acoustics
  • 7212 Accesses

Abstract

Large size silencers are attached to the intake and exhaust of large industrial plants, e.g. forced ventilation systems for mining industry, intake of cooling towers (Fig. 11.1) or flue gas stacks of power plants to protect the neighbourhood from plant noise. Large silencers are also required for ventilation openings of rooms with high internal sound pressure levels, e.g. industrial production halls or subway ventilation ducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Constructional elements in such ducts or openings mainly employed for guiding or filtering the gas flow are also designed to act as silencers.

  2. 2.

    A branch that is not small compared to the wavelength can be treated as an expansion of the pipe as long as the total diameter is less than half a wavelength.

  3. 3.

    Tangential flow past the perforated plate in front of a side branch results in a fraction of the dynamic flow resistance which adds to the damping. This effect is more important than the variation of propagation velocity of sound waves.

  4. 4.

    The results are calculated for the fundamental mode in a sound field with rotational symmetry. Anti-symmetric sound fields may be less attenuated by lower flow resistivity of the material.

  5. 5.

    Numerous calculated data for absorbent splitters without cover material are given in [16].

  6. 6.

    For steam \( R = 461{\text{Nm/kg}}{\text{K}} \); for air \( R = 287{\text{Nm/kg}}{\text{K}} \).

  7. 7.

    According to measurements by Kurze/Donner [25], the value is 0.02 for perforated plate. According to VDI 2081 [25], the average value is 0.016 for HVAC equipment, but the exponent in Eq. (11.63) is about 2.9.

  8. 8.

    Based on former experience reported in VDI 2081 (1983), Kurze/Donner [26] propose the value \( \zeta_{1} = 1.2 \). Recent experimental data for the range \( 0.3 < h/(d + h) < 0.6 \) for 100–300 mm thick baffles for HVAC equipment reported in VDI 2081 (2001) are in the range from \( {\zeta_1} = { 1} - {1}.{2} \).

  9. 9.

    Flow noise is occasionally reported in the literature for smooth pipes as a function of flow velocity and cross-sectional area. However, there are no measured data or physical evidence for the boundary layer as a substantial noise source.

  10. 10.

    Consistent with the flow noise from air outlets described in VDI 2081 [25].

  11. 11.

    The frequency characteristic of flow noise in straight air conduits is described in VDI 2081 by the asymptotic value −26 lg \( f \) instead of −20 lg \( f \). Stüber [27] proposes roughly −12 lg \( f \).

  12. 12.

    In VDI 2081 [25], the noise in straight air conduits is described by \( {L_{{WA}}} = \left( { - 25 + 70\lg v + 10\lg S} \right){\text{dB}} \). In the range from 1 to 22 m/s, the difference to Eq. (11.67) is less than 2 dB. Thus, it is likely that similar sources of sound are described.

  13. 13.

    Silencers are commonly designed to provide a level of flow noise way below the level of total plant noise. Therefore, just a few field data are available. Eqs. (11.65)–(11.67) refer to laboratory data.

References

  1. ISO 14163 (1999) Acoustics: Guidelines for noise control by silencers

    Google Scholar 

  2. Frommhold W (1996) Absorptionsschalldämpfer. In Schirmer W (ed) Technischer Schallschutz. VDI-Verlag Düsseldorf, chapter 9

  3. Brennan MJ, To WM (2001) Acoustic properties of rigid-frame porous materials – An engineering perspective. Appl Acoust 62:793–811

    Article  Google Scholar 

  4. ISO 11820 (1997) Acoustics: measurements on silencers in situ

    Google Scholar 

  5. Piening W (1937) VDI-Z. 81, 776 (cited in [6])

    Google Scholar 

  6. Cremer L (1940) Nachhallzeit und Dämpfungsmaß bei streifendem Einfall. Akustische 5(2):57–76

    Google Scholar 

  7. Sivian LJ (1937) Sound propagation in ducts lined with absorbing materials. J Acoust Soc Am 9:135–140

    Article  ADS  Google Scholar 

  8. Cremer L (1975) Vorlesungen über technische Akustik. Springer, Berlin, 147

    Google Scholar 

  9. Aurégan Y, Starobinski R, Pagneux V (2001) Influence of grazing flow and dissipation effects on the acoustic boundary conditions at a lined wall. J Acoust Soc Am 109(1):59–64

    Article  ADS  Google Scholar 

  10. Klein W (1957) Matrizen. In: Rint C (ed) Handbuch der Hochfrequenz- und Elektrotechnik Band III. Verlag für Radio-Foto-Kinotechnik, Berlin, 134 et seqq

    Google Scholar 

  11. Kurze U (1969) Schallausbreitung im Kanal mit periodischer Wandstruktur. Acustica 21:74–85

    Google Scholar 

  12. Munjal M (1987) Acoustics of ducts and mufflers. Wiley, New York

    Google Scholar 

  13. Galaitsis AG, Ver IL (1992) Passive silencers and lined ducts. In: Beranek LL, Ver IL (eds) Noise and vibration control engineering. Wiley, New York, chapter 10

    Google Scholar 

  14. Mechel FP (1994) Schallabsorption. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, 2. Aufl. Springer, Berlin, chapter 19

  15. Aurégan Y, Debray A, Starobinski R (2001) Low frequency sound propagation in a coaxial cylindrical duct: application to sudden area expansions and to dissipative silencers. J Sound Vib 243(3):461–473

    Article  ADS  Google Scholar 

  16. Wöhle W (1984) Schallausbreitung in absorbierend ausgekleideten Kanälen. In: Fasold W, Kraak W, Schirmer W (eds) Taschenbuch Akustik Part 1. VEB Verlag Technik, Berlin, chapter 1.8

  17. Mechel FP (1994) Schalldämpfer. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, 2. Aufl. Springer, Berlin, chapter 20

  18. Kang YJ, Jung IH (2001) Sound propagation in circular ducts lined with noise control foams. J Sound Vib 239(2):255–273

    Article  ADS  Google Scholar 

  19. Aly ME, Badawy MTS (2001) Sound propagation in lined annular-variable area ducts using bulk-reacting liners. Appl Acoust 62:769–778

    Article  Google Scholar 

  20. Munjal ML, Thawani PT (1997) Effect of protective layer on the performance of absorptive ducts. Noise Control Eng J 45(1):14–18

    Article  Google Scholar 

  21. ISO 11691 (1997) Acoustics: Measurement of insertion loss of ducted silencers without flow – laboratory survey method

    Google Scholar 

  22. Cummings A, Normaz N (1993) Acoustic attenuation in dissipative splitter silencers containing mean fluid flow. J Sound Vib 168(2):209–227

    Article  ADS  MATH  Google Scholar 

  23. Landau LD, Lifschitz EM (1966) Lehrbuch der theoretischen Physik, vol VI, Hydrodynamik. Akademie-Verlag, Berlin, Chapter IX

    Google Scholar 

  24. Idel’Chik IE (1994) Handbook of hydraulic resistance, 3rd edn. CRC, London

    Google Scholar 

  25. VDI 2081 (2001) Page 1: Geräuscherzeugung und Lärmminderung in raumlufttechnischen Anlagen. Beuth, Berlin

    Google Scholar 

  26. Kurze UJ, Donner U (1989) Schalldämpfer für staubhaltige Luft. Schriftenreihe der Bundesanstalt für Arbeitsschutz – Forschung – Fb 574

    Google Scholar 

  27. Stüber B, Mühle C, Fritz KR (1994) Strömungsgeräusche. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, 2. Aufl. Springer, Berlin, chapter 9

    Google Scholar 

  28. ISO 7235 (2002) Acoustics: Measurement procedures for ducted silencers – Insertion loss, flow noise and total pressure loss

    Google Scholar 

  29. Selamet A, Radavich PM (1997) The effect of length on the acoustic attenuation performance of concentric expansion chambers: an analytical, computational and experimental investigation. J Sound Vib 201:407–426

    Article  ADS  Google Scholar 

  30. Kirby R (2001) Simplified techniques for predicting the transmission loss of a circular dissipative silencer. J Sound Vib 243(3):403–426

    Article  ADS  Google Scholar 

  31. Kurze U (2004) Calculation of silencer with circular cross section and centre body. Fortschritte der Akustk DAGA 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Riedel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurze, U., Riedel, E. (2013). Silencers. In: Müller, G., Möser, M. (eds) Handbook of Engineering Acoustics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69460-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69460-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24052-5

  • Online ISBN: 978-3-540-69460-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics