Skip to main content

Acid–Base Balance

  • Chapter
  • First Online:
Management of Acute Kidney Problems

Abstract

The essence of the physical chemical approach to acid–base balance is the understanding that there are three variables that are essential in determining blood pH: partial pressure of CO2, strong ion difference (SID), and total weak acid concentration (ATOT). Neither H+ nor HCO3 can change unless one or more of these three variables change. Strong ions are completely dissociated in blood plasma; weak acids by contrast alter their ionization with changes in pH. While it is possible to describe an acid–base disorder in terms of H+ or HCO3 concentrations or base excess, it is incorrect to analyze the pathology, and potentially dangerous to plan treatment, on the basis of altering these variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert M, Dell R, Winters R: Quantitative displacement of acid-base equilibrium in metabolic acidosis. Ann Intern Med 1967; 66:312–315

    CAS  PubMed  Google Scholar 

  2. Figge J, Mydosh T, Fencl V: Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 1992; 120:713–719

    CAS  PubMed  Google Scholar 

  3. Singer RB, Hastings AB: An improved clinical method for the estimation of disturbances of the acid-base balance of human blood. Medicine (Baltimore) 1948; 27:223–242

    Article  CAS  Google Scholar 

  4. Kellum JA, Bellomo R, Kramer DJ, et al: Fixed acid uptake by visceral organs during early endotoxemia. Adv Exp Med Biol 1997; 411:275–279

    CAS  PubMed  Google Scholar 

  5. Kellum JA, Kramer DJ, Pinsky MR: Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 1995; 10:51–55

    Article  CAS  PubMed  Google Scholar 

  6. Gilfix BM, Bique M, Magder S: A physical chemical approach to the analysis of acid-base balance in the clinical setting. J Crit Care 1993; 8:187–197

    Article  CAS  PubMed  Google Scholar 

  7. Mecher C, Rackow EC, Astiz ME, et al: Unaccounted for anion in metabolic acidosis during severe sepsis in humans. Crit Care Med 1991; 19:705–711

    Article  CAS  PubMed  Google Scholar 

  8. Kirschbaum B: Increased anion gap after liver transplantation. Am J Med Sci 1997; 313:107–110

    Article  CAS  PubMed  Google Scholar 

  9. Kellum JA, Bellomo R, Kramer DJ, et al: Hepatic anion flux during acute endotoxemia. J Appl Physiol 1995; 78: 2212–2217

    CAS  PubMed  Google Scholar 

  10. Bourke E, Haussinger D: pH homeostasis: the conceptual change. Contrib Nephrol 1992; 100:58–88

    CAS  PubMed  Google Scholar 

  11. Oliver J, Bourke E: Adaptations in urea and ammonium excretion in metabolic acidosis in the rat: a reinterpretation. Clin Sci Mol Med 1975; 48:515–520

    CAS  Google Scholar 

  12. Atkinson DE, Bourke E: pH Homeostasis in terrestrial vertebrates; Ammonium ion as a proton source. In: Comparative and Environmental Physiology. Mechanisms of Systemic Regulation, Acid-Base Regulation, Ion Transfer and Metabolism. Heisler N (Ed). Berlin: Springer, 1995, pp 1–26.

    Google Scholar 

  13. Moore EW: The alkaline tide. Gastroenterology 1967; 52:1052–1054

    CAS  PubMed  Google Scholar 

  14. Cushing H: Concerning the poisonous effect of pure sodium chloride solutions upon the nerve muscle preparation. Am J Physiol 1902; 6:77ff

    Google Scholar 

  15. Shires GT, Tolman J: Dilutional acidosis. Ann Intern Med 1948; 28:557–559

    CAS  PubMed  Google Scholar 

  16. Kellum JA, Bellomo R, Kramer DJ, et al: Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 1998; 9:364–368

    Article  CAS  PubMed  Google Scholar 

  17. Scheingraber S, Rehm M, Sehmisch C, et al: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999; 90: 1265–1270

    Article  CAS  PubMed  Google Scholar 

  18. Waters JH, Bernstein CA: Dilutional acidosis following hetastarch or albumin in healthy volunteers. Anesthesiology 2000; 93:1184–1187

    Article  CAS  PubMed  Google Scholar 

  19. Morgan TJ, Venkatesh B, Hall J: Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med 2002; 30:157–160

    Article  CAS  PubMed  Google Scholar 

  20. Waters JH, Miller LR, Clack S, et al: Cause of metabolic acidosis in prolonged surgery. Crit Care Med 1999; 27: 2142–2146

    Article  CAS  PubMed  Google Scholar 

  21. Fencl V, Jabor A, Kazda A, et al: Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 2000; 162:2246–2251

    CAS  PubMed  Google Scholar 

  22. Finfer S, Bellomo R, Boyce N, et al: A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350:2247–2256

    Article  CAS  PubMed  Google Scholar 

  23. Kellum JA: Recent advances in acid-base physiology applied to critical care. In: Yearbook of Intensive Care and Emergency Medicine. Vincent JL (Ed). Heidelberg: Springer-Verlag, 1998, pp 579–587.

    Google Scholar 

  24. Wilkes P: Hypoproteinemia, SID, and acid-base status in critically ill patients. J Appl Physiol 1998; 84:1740–1748

    CAS  PubMed  Google Scholar 

  25. Kellum JA: Determinants of blood pH in health and disease. Crit Care 2000; 4:6–14

    Article  CAS  PubMed  Google Scholar 

  26. Balasubramanyan N, Havens PL, Hoffman GM: Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 1999; 27:1577–1581

    Article  CAS  PubMed  Google Scholar 

  27. Kaplan L, Kellum JA: Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 2004; 32: 1120–1124

    Article  CAS  PubMed  Google Scholar 

  28. Moviat M, van Haren F, van der Hoeven H: Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 2003; 7: R41–R45

    Article  PubMed  Google Scholar 

  29. Cusack RJ, Rhodes A, Lochhead P, et al: The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 2002; 28:864–869

    Article  CAS  PubMed  Google Scholar 

  30. Rocktaschel J, Morimatsu H, Uchino S, et al: Unmeasured anions in critically ill patients: can they predict mortality? Crit Care Med 2003; 31:2131–2136

    Article  Google Scholar 

  31. Gunnerson KJ, Roberts G, Kellum JA: What is normal strong ion gap (SIG) in healthy subjects and critically ill patients without acid-base abnormalities. Crit Care Med 2003; 31:A111-Abstract

    Google Scholar 

  32. Dondorp AM, Chau TT, Phu NH, et al: Unidentified acids of strong prognostic significance in severe malaria. Crit Care Med 2004; 32:1683–1688

    Article  CAS  PubMed  Google Scholar 

  33. Rocktaschel J, Morimatsu H, Uchino S, et al: Acid-base status of critically ill patients with acute renal failure: analysis based on Stewart-Figge methodology. Crit Care 2003; 7: R60-R66

    Article  Google Scholar 

  34. Wang H, Bloom O, Zhang M, et al: HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285: 248–251

    Article  CAS  PubMed  Google Scholar 

  35. Gunnerson KJ, Saul M, Kellum JA: Lactic versus nonlactic metabolic acidosis: outcomes in critically ill patients. Abstract. Crit Care 2003; 7(Suppl 2):S8–S9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Kellum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kellum, J.A. (2010). Acid–Base Balance. In: Jörres, A., Ronco, C., Kellum, J. (eds) Management of Acute Kidney Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69441-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69441-0_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69413-7

  • Online ISBN: 978-3-540-69441-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics