Skip to main content

Scale and Spatial Autocorrelation From A Remote Sensing Perspective

  • Chapter
Geo-Spatial Technologies in Urban Environments

Abstract

One of the challenges for urban and regional planners and other users of remotely sensed imagery is how to select the appropriate data for a particular monitoring or mapping problem. In the past, the dearth of available imagery meant that the problem itself usually had to be adapted to fit the data, which was typically limited to either high spatial resolution film-based aerial imagery, or coarse-spatial resolution digital satellite imagery. Today, a vast range of aerial and satellite imagery is available (Kramer, 2002), opening a new range of potential scales of problems that can be investigated. However, these new options also place additional burdens on the remote sensing user, who, in selecting data, has to consider differences in spectral, temporal, radiometric, and spatial characteristics of the imagery. Spatial properties are particularly important, and the pixel size of current sensors varies over more than three orders of magnitude (from 0.6 m to 1 km and larger) (Kramer, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anselin, L., 1995. Local Indicators of Spatial Autocorrelation — LISA. Geographical Analysis 27(2):93–15.

    Article  Google Scholar 

  • Bannari, A., K. Omari, P. Tellet, and G. Fedosejevs, 2005. Radiometric Uniformity and Stability of Test Sites Used for the Calibration of Earth Observation Sensors. IEEE Transactions on Geosciences and Remote Sensing 43(12):2918–2926.

    Article  Google Scholar 

  • Cohen, W. B., T. A. Spies, and G. A. Bradshaw, 1990. Semivariograms of Digital Imagery for Analysis of Conifer Canopy Structure. Remote Sensing of Environment 34:167–178.

    Article  Google Scholar 

  • Curran, P. J., 1988. The Semivariogram in Remote Sensing: An Introduction. Remote Sensing of Environment 24: 493–507.

    Article  Google Scholar 

  • Geary, R., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5:115–145.

    Article  Google Scholar 

  • Getis, A., and J. K. Ord, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis 24(3):189–206.

    Article  Google Scholar 

  • Goodchild, M. F., 1986. Spatial Autocorrelation. Geo, Norwich, United Kingdom, 56 pp.

    Google Scholar 

  • Hyppänen, H., 1996. Spatial Autocorrelation and Optimal Spatial Resolution of Optical Remote Sensing Data in Boreal Forest Environment. International Journal of Remote Sensing 17(17):3441–3452.

    Google Scholar 

  • Jupp, D. L. B., A. H. Strahler, and C. E. Woodcock, 1988. Autocorrelation and Regularization in Digital Images I. Basic Theory. IEEE Transactions on Geoscience and Remote Sensing 26(4):463–473.

    Article  Google Scholar 

  • Jupp, D. L. B., A. H. Strahler, and C. E. Woodcock, 1989. Autocorrelation and Regularization in Digital Images II. Simple Image Models. IEEE Transactions on Geoscience and Remote Sensing 27(3):247–258.

    Article  Google Scholar 

  • Kramer, H. J., 2002. Observation of the Earth and its Environment. Springer, Berlin, Germany, 1510pp.

    Google Scholar 

  • LeDrew, E. F., H. Holden, M. A. Wulder, C. Derksen, C. Newman, 2004. A spatial statistical operator applied to multidate satellite imagery for identification of coral reef stress. Remote Sensing of Environment 91:271–279.

    Article  Google Scholar 

  • Marceau, D., 1999. The scale issue in social and natural sciences. Canadian Journal of Remote Sensing 25(4): 347–356.

    Google Scholar 

  • Matheron, G., 1971. The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphologie Mathematiques de Fontainebleau No. 5, Fontainebleau, France.

    Google Scholar 

  • Moran, P. A. P., 1948. The interpretation of statistical maps. Journal of the Royal Statistical Society, series B:246–251.

    Google Scholar 

  • Ord, J., and A. Getis, 1995. Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis 27:286–306.

    Article  Google Scholar 

  • Sawada, M. 2004. Global Spatial Autocorrelation Indices-Moran’s I, Geary’s C and the General Cross-Product Statistic. Research paper from the Laboratory for Paleoclimatology and Climatology at the University of Ottawa. (as posted online at: http://www.lpc.uottawa.ca/publications/moransi/moran.htm)

    Google Scholar 

  • St-Onge, B. A. and F. Cavayas, 1997. Automated Forest Structure Mapping from high Resolution Imagery Based on Directional Semivariogram Estimates. Remote Sensing of Environment 61:82–95.

    Article  Google Scholar 

  • Switzer, P., and S. E. Ingebritsen, 1986. Ordering of Time-Difference Data from Multispectral Imagery. Remote Sensing of Environment 20(1): 85–94.

    Article  Google Scholar 

  • Warner, T. A., 1999. Analysis of spatial patterns in remotely sensed data using multivariate spatial correlation. Geocarto International 14(1):59–65.

    Google Scholar 

  • Warner, T. A. and M. C. Shank, 1997. Spatial Autocorrelation Analysis of Hyperspectral Imagery for Feature Selection. Remote Sensing of Environment 60:58–70.

    Article  Google Scholar 

  • Warner, T. and K. Steinmaus, 2005. Classification of orchards and vineyards with high spatial resolution panchromatic imagery. Photogrammetric Engineering and Remote Sensing 71(2):179–187.

    Google Scholar 

  • Woodcock, C. E., A. H. Strahler, and D. L.B. Jupp, 1988. The Use of Variograms in Remote Sensing: I. Scene Models and Simulated Images. Remote Sensing of Environment 25:323–348.

    Article  Google Scholar 

  • Wu, S-S., B. Xu, and L. Wang, 2006. Urban Land-use Classification Using Variogram-based Analysis with an Aerial Photograph. Photogrammetric Engineering & Remote Sensing 72(7): 813–822.

    Google Scholar 

  • Wulder, M. and B. Boots, 1998. Local spatial autocorrelation characteristics of remotely sensed imagery assessed with the Getis statistic. International Journal of Remote Sensing 19(11):2223–2231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spiker, J.S., Warner, T.A. (2007). Scale and Spatial Autocorrelation From A Remote Sensing Perspective. In: Jensen, R.R., Gatrell, J.D., McLean, D. (eds) Geo-Spatial Technologies in Urban Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69417-5_10

Download citation

Publish with us

Policies and ethics