Skip to main content

Regulationsmechanismen der Transkription in Eukaryonten

  • Chapter
Grundlagen der Molekularen Medizin
  • 6789 Accesses

Auszug

Die von Generation zu Generation weitergegebene, also vererbte, Information bezeichnet man als das Genom. Diese Information beinhaltet in kodierter Form die Anleitung zur Produktion von Proteinen, und diese Proteine wiederum bestimmen die Entwicklung von einzelnen Zellen, komplexeren Organen bis hin zum vollständigen Organismus. Das Genom besteht aus Desoxyribonukleinsäure (DNA) und ist untergliedert in Untereinheiten, den sog. Genen. Jedes Gen enthält die Information für ein Protein. Der Mensch z. B. besitzt ca. 25.000 Gene. Jedes Gen enthält einen transkribierten Bereich (Matrize), der mittels einer RNA-Polymerase in Ribonukleinsäure (RNA) umgeschrieben wird. Nur ein Teil dieses transkribierten Abschnitts trägt die Information für ein Protein, andere Bereiche wiederum tragen keine Informationen für die Proteinsynthese und werden nach der Transkription wieder aus dem RNA-Transkript entfernt. Neben den transkribierten Bereichen gibt es regulatorische Abschnitte, die nicht in RNA umgeschrieben werden. Diese regulatorischen Abschnitte bestimmen, wie oft ein Gen transkribiert wird, d. h., wie viel RNA-Kopien von einem Gen angefertigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677: 52–57

    PubMed  CAS  Google Scholar 

  • Buratowski S (2005) Connections between mRNA 3′ end processing and transcription termination. Curr Opin Cell Biol 17: 257–261

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Glass CK (2006) Going nuclear in metabolic and cardiovascular disease. J Clin Invest 116:556–560

    Article  PubMed  CAS  Google Scholar 

  • Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    Article  PubMed  CAS  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973

    Article  PubMed  CAS  Google Scholar 

  • Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912

    Article  PubMed  CAS  Google Scholar 

  • Karin M, Hunter T (1995) Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5: 747–757

    Article  PubMed  CAS  Google Scholar 

  • Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G (2004) Multiple links between transcription and splicing. RNA 10: 1489–1498

    Article  PubMed  CAS  Google Scholar 

  • Lappin TR, Grier DG, Thompson A, Halliday HL (2006) HOX genes: seductive science, mysterious mechanisms. Ulster Med J 75: 23–31

    PubMed  Google Scholar 

  • Lewis BA, Reinberg D (2003) The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci 116:3667–3675

    Article  PubMed  CAS  Google Scholar 

  • Luo JL, Kamata H, Karin M (2005) IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115:2625–2632

    Article  PubMed  CAS  Google Scholar 

  • Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Meinhart A, Kamenski T, Hoeppner S, Baumli S, Cramer P (2005) A structural perspective of CTD function. Genes Dev 19:1401–1415

    Article  PubMed  CAS  Google Scholar 

  • Mendes Soares LM, Valcarcel J (2006) The expanding transcriptome: the genome as the, Book of Sand’. Embo J 25:923–931

    Article  PubMed  CAS  Google Scholar 

  • Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO Rep 7:161–167

    Article  PubMed  CAS  Google Scholar 

  • Ohlsson R, Renkawitz R, Lobanenkov V (2001) CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Perissi V, Rosenfeld MG (2005) Controlling nuclear receptors: the circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6:542–554

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–551

    Article  PubMed  CAS  Google Scholar 

  • Privalsky ML (2004) The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66: 315–360

    Article  PubMed  CAS  Google Scholar 

  • Roberts CW, Orkin SH (2004) The SWI/SNF complex-chromatin and cancer. Nat Rev Cancer 4:133–142

    PubMed  CAS  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  PubMed  CAS  Google Scholar 

  • Roeder RG (2005) Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett 579:909–915

    Article  PubMed  CAS  Google Scholar 

  • Silverstein RA, Ekwall K (2005) Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 47:1–17

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Watson JJ, Baker TA, Bell SP, Gann A, Levine M, Losick R (2004) Molecular biology of the gene: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • West AG, Fraser P (2005) Remote control of gene transcription. Hum Mol Genet 14 Spec No 1: R101–111

    Google Scholar 

Literatur zur Zeittafel

  • Banerji J, Rusconi S, Schaffner W (1981 ) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70: 3240–3244

    Article  PubMed  CAS  Google Scholar 

  • Cote J, Quinn J, Workman JL, Peterson CL (1994) Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/ SNF complex. Science 265:53–60

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Gnatt AL, Bushnell DA, Jensen GJ, Thompson NE, et al (1999) Yeast RNA polymerase II at 5 A resolution. Cell 98: 799–810

    Article  PubMed  CAS  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187: 226–232

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Perrin D, Sanchez C, Monod J (1960) [Operon: a group of genes with the expression coordinated by an operator.]. C R Hebd Seances Acad Sci 250:1727–1729

    PubMed  CAS  Google Scholar 

  • Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370:477–481

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci USA 74: 560–564

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317–1319

    Article  PubMed  CAS  Google Scholar 

  • Mizzen CA,Yang XJ, Kokubo T, Brownell JE, Bannister AJ, et al (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Scaife J, Beckwith JR (1966) Mutational alteration of the maximal level of Lac operon expression. Cold Spring Harb Symp Quant Biol 31:403–408

    PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550

    Article  PubMed  CAS  Google Scholar 

  • Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    Article  PubMed  CAS  Google Scholar 

  • Tjian R (1978) The binding site on SV40 DNA for a T antigen-related protein. Cell 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Gladstone LA (1959) A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. Journal of the American Chemical Society 81:4118–4119

    Article  CAS  Google Scholar 

  • Zhang G, Campbell EA, Minakhin L, Richter C, Severinov K, Darst SA (1999) Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 A resolution. Cell 98:811–824

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Renkawitz, R., Leers, J. (2008). Regulationsmechanismen der Transkription in Eukaryonten. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69414-4_6

Download citation

Publish with us

Policies and ethics