Skip to main content

Mitochondriale DNA des Menschen

  • Chapter
Grundlagen der Molekularen Medizin
  • 6913 Accesses

Auszug

Ein Primärmerkmal von Eukaryonten ist der Besitz von Mitochondrien als Bestandteile des Zytoplasmas. Mitochondrien sind zumeist stäbchenförmig und messen zwischen 0,2–1 µm im Durchmesser und 2–8 µm in Längsrichtung. Ihre Zahl schwankt je nach Zelltyp zwischen wenigen Dutzenden in den Spermien und primordialen Keimzellen bis zu Zehntausenden in Leberzellen oder reifen Oozyten. Die bisherige Vorstellung von Mitochondrien als solitären Zellorganellen ist jedoch nicht länger haltbar; Mitochondrien durchziehen die Zelle als verzweigte Netzwerke, welche dynamischen Fusions- und Spaltungsprozessen unterliegen. Die Mitochondrien einer Zelle bilden somit eine strukturelle und physiologische Einheit, die man als mitochondriales Retikulum bezeichnet (Okamoto u. Shaw 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Altman S, Baer M, Guerrier-Takada C, Vioque A (1986) Enzymatic cleavage of RNA by RNA. Trends Biochem Sci 11: 515–518

    Article  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Article  PubMed  CAS  Google Scholar 

  • Ashley MV, Laipis PJ, Hauswirth WW (1989) Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 17: 7325–7331

    Article  PubMed  CAS  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93:93–145

    PubMed  CAS  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Anderson S, Bankier AT, de Bruijn MH, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs. Proc Natl Acad Sci USA 77: 3164–3166

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2005) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  CAS  Google Scholar 

  • Birky CW(1995) Uniparental inheritanceof mitochondiral and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338

    Google Scholar 

  • Cai YC, Bullard JM, Thompson NL, Spremulli LL (2000) Interaction of mitochondrial elongation factor Tu with aminoacyl-tRNA and elongation factor Ts. J Biol Chem 275: 20308–20314

    Article  PubMed  CAS  Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1985) Priming of human mitochondrial DNA replication occurs at the light-strand promotor. Proc Natl Acad Sci USA 82: 351–355

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1987b) A mammalian mitochondrial RNA processing activity contains nuclear-encoded RNA. Science 235:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14: R283–289

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000) Epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48: 188–193

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Taylor GA, Howell N, Brown DT, Parsons TJ, Turnbull DM (2001) Point mutations of the mtDNA control region in normal and neurodegenerative human brains. Am J Hum Genet 68: 529–532

    Article  PubMed  CAS  Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28: 693–705

    Article  PubMed  CAS  Google Scholar 

  • Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2: 324–329

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg M, Gaspari M, Rantanen A., Trifunovic A, Larsson NG, Gustafsson CM (2002) Mitochndrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Fisher RP, Lisowsky T, Parisi MA, Clayton DA (1992) DNA wrapping and bending by a mitochondrial migh mobility group-like transcriptional activator protein. J Biol Chem 267:3358–3367

    PubMed  CAS  Google Scholar 

  • Gelfand R and Attardi G (1981) Synthesis and turnover of mitochondrial ribonucleic acids in HeLa cells: the mature ribosomal and messenger ribonucleic acid species are metabolically unstable. Mol Cell Biol 1:497–511

    PubMed  CAS  Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77: 6715–6719

    Article  PubMed  CAS  Google Scholar 

  • Gill P, Ivanov PL, Kimpton C, Piercy R, Benson N, Tully G, Evett I, Hagelberg E, Sullivan K(1994) Identification of the remains of the Romanov family by DNA analysis. Nature Genet 6:130–135

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Hixson JE, Wong TW, Clayton DA (1986) Both the conserved stemloop abd divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 261:2384–2390

    PubMed  CAS  Google Scholar 

  • Hoekstra RF (2000) Evolutionary origin and consequences of uniparental mitochondrial inheritance. Hum Reprod 15(Suppl. 2): 102–111

    PubMed  Google Scholar 

  • Holt IJ, Lorimer HE, Jacobs HT (2000) Coupled leading-and lagging strand synthesis of mammalian mitochondrial DNA. Cell 100: 515–524

    Article  PubMed  CAS  Google Scholar 

  • Howell N (1999) Human mitochondrial disease: answering questions and questioning answers. Int Rev Cyt 186:49–116

    CAS  Google Scholar 

  • Howell N, Kubacka I, Mackey DA (1996) How rapidly does the human mitochondrial genome evolve? Am J Hum Genet 59: 501–509

    PubMed  CAS  Google Scholar 

  • Howell N, Xu M, Halvorson S, Bodis-Wollner I, Sherman J (1994) A heteroplasmic LHON family: tissue distribution and transmission of the 11778 mutation. Am J Hum Genet 55: 203–206

    PubMed  CAS  Google Scholar 

  • Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and periimplantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21:644–654

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Nakada K, Ogure A, Isobe K, Goto Y, Nonaka I, Hayashi Jl (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    Article  PubMed  CAS  Google Scholar 

  • Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, Parsons TJ (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Jackson DA, Bartlett J, Cook PR (1996) Sequences attaching loops of nuclear and mitochondrial DNA to underlying structures in human cells: the role of transcription units. Nucleic Acids Res 24:1212–1219

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Fu K, Shoubridge EA (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet 16:93–95

    Article  PubMed  CAS  Google Scholar 

  • Khrapko K, Collier HA, Andre PC, Li, XC, Hanekamp JS, Thilly W (1997) Mitochondrial mutation spectra in human cells and tissues. Proc Natl Acad Sci USA 94:13798–1380

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Freeland SJ, Landweber L (2001) Rewiring the keyboard: evolvability of the genetic code. Nature Rev 2:49–58

    Article  CAS  Google Scholar 

  • Kolesnikova OA, Entelis NS, Jacquin-Becker C, Goltzene F, Chrzanowska-Lightowlers ZM, Lightowlers RN, Martin RP, Tarassov I (2004) Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum Mol Genet 13:2519–2534

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  PubMed  CAS  Google Scholar 

  • Kruse B, Narasimhan N, Attardi G (1989) Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell 58:391–397

    Article  PubMed  CAS  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Burger G, O’Kelly CI, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling an eubacterial genome in miniature. Nature 387:493–497

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Lecrenier N, Foury F (2000) New features of mitochondrial DNA replication system in yeast and man. Gene 246: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Lee DY, Clayton DA (1997) RNAse mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Develop 11: 582–592

    Article  PubMed  CAS  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Rojo M (2004) Organization and dynamics of human mitochondrial DNA. J Cell Sci 117: 2653–2662

    Article  PubMed  CAS  Google Scholar 

  • Liu M and Spremulli L (2000) Interaction of mammalian mitochondrial ribosomes with the inner membrane. J Biol Chem 275: 29400–29406

    Article  PubMed  CAS  Google Scholar 

  • Manella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762: 140–147

    Google Scholar 

  • Margulis, L (1981) Symbiosis in cell evolution. Freeman, San Francisco

    Google Scholar 

  • Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G (2005) Termination factor mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell 123:1227–1240

    Article  PubMed  CAS  Google Scholar 

  • Matthews PM, Hopkin J, Brown R, Stephenson J, Hilton-Jones D, Brown GK (1994) Comparison of the relative levels of the 3243 A→G mtDNA mutation in heteroplasmic adult and fetal tissues. J Med Genet 31:41–44

    Article  PubMed  CAS  Google Scholar 

  • Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-dependent accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–779

    Article  PubMed  CAS  Google Scholar 

  • Montoya J, Gaines GL, Attardi G (1983) The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 34:151–159

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9

    Google Scholar 

  • Nishimura Y, Yoshinari T, Naruse K, Yamada T, Sumi K, Mitani H, Higashiyama T, Kuroiwa T (2006) Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc Natl Acad Sci USA 103:1382–1387

    Article  PubMed  CAS  Google Scholar 

  • Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Science 290:470–474

    CAS  Google Scholar 

  • Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39: 503–536

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 246: 48–54

    Article  Google Scholar 

  • Patel VB, Cunningham CC, Hantgan RR (2001) Physiochemical properties of rat liver mitochondrial ribosomes. J Biol Chem 276: 6739–6746

    Article  PubMed  CAS  Google Scholar 

  • Pietromonaco SF, Denslow ND, O’Brien TW (1991) Proteins of mammalian mitochondrial ribosomes. Biochimie 73:827–836

    Article  PubMed  CAS  Google Scholar 

  • Prieto-Martin A, Montaya J, Martinez-Azorin F (2004) Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA. Nucleic Acids Res 32:2059–2068

    Article  PubMed  CAS  Google Scholar 

  • Puranam RS, Attardi G (2001) The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 21: 548–561

    Article  PubMed  CAS  Google Scholar 

  • Reichert A, Mörl M (2000) Repair of tRNAs in metazoan mitochondria. Nucleic Acids Res 28: 2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Richter C (1994) Role of mitochondrial DNA modifications in degenerative diseases and aging. Curr Topics Bioenerg 17:1–16

    CAS  Google Scholar 

  • Robberson DL, Clayton DA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci USA 69: 3810–3814

    Article  PubMed  CAS  Google Scholar 

  • Rossmanith W, Tullo A, Potuschak T. Karwan R, Sbisa E (1995) Human mitochondrial tRNA processing. J Biol Chem 270:12885–12891

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Nakada K, Akimoto M, Ishikawa K, Ono T, Shitara H, Yonekawa H, Hayashi JI (2005) Rare creation of recombinant mtDNA haplotypes in mammalian tissues. Proc Natl Acad Sci USA 102: 6057–6062

    Article  PubMed  CAS  Google Scholar 

  • Schon EA (2000) Mitochondrial genetics and disease. Trends Biochem Sci 25:555–560

    Article  PubMed  CAS  Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. New Engl J Med 347: 576–580

    Article  PubMed  Google Scholar 

  • Shadel GS, Clayton DA (1997) Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 66:409–435

    Article  PubMed  CAS  Google Scholar 

  • Shoffner JM, Brown MD, Torroni A, Lott MT, Cabell MF, Mirra SS, Beal MF, Yang CC, Gearing M, Salvo R, Watts RL, Juncos JL, Hansen LA, Crain BJ, Fayad M, Rechord CL, Wallace DC (1993) Mitochondrial DNA variants observed in Alzheimer and Parkinson disease patients. Genomics 17:171–184

    Article  PubMed  CAS  Google Scholar 

  • Thyagarajan B, Padua RA, Campbell C (1996) Mammalian mitochondria possess homologous recombination activity. J Biol Chem 271: 27536–27543

    Article  PubMed  CAS  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenbaerg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  • Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1507

    Article  PubMed  CAS  Google Scholar 

  • Virbasius CA and Scarpulla RC(1994) Activation of the human transcription factor A gene by nuclear respiratory factors: a potential link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci USA 91: 1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    PubMed  CAS  Google Scholar 

  • Wong TW, Clayton DA (1985) Isolation and characterization of a DNA primase from human mitochondria. J Biol Chem 260: 11530–11535

    PubMed  CAS  Google Scholar 

  • Xu B, Clayton DA (1996) RNA-DNA hybrid formation at the human mitochondrial heavy-strand origin ceases at replication start sites: an implication for RNA-DNA hybrids serving as primers. EMBOJ 15:3135–3143

    CAS  Google Scholar 

  • Zsurka G, Kraytsberg Y, Kudina T, Kornblum C, Elger CE, Khrapko K, Kunz WS (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 37:873–877

    Article  PubMed  CAS  Google Scholar 

Literatur zur Zeittafel

  • Aloni Y, Attardi G (1971) Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc Natl Acad Sci USA 68:1757–1761

    Article  PubMed  CAS  Google Scholar 

  • Altman R (1890) Die Elementarorganismen und Ihre Beziehungen zu den Zellen. Verlag von Veit, Leipzig

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290: 457–465

    Article  PubMed  CAS  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature 282:189–194

    Article  PubMed  CAS  Google Scholar 

  • Benda C (1898) Weitere Mitteilungen über die Mitochondria. Verh Physiol Ges Berlin 376–383

    Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Correns C (1909) Vererbungsversuche mit blass (gelb) grünen und buntblättrigen Sippen bei Mirabilis jalapa, Urtica und Lunaria. Z Indukt AbstammungsVererbungsl, 27: 235–237

    Google Scholar 

  • Ephrussi B (1953) Nuclear-Cytoplasmic Relations in Micro-Organisms. Oxford University Press, London

    Google Scholar 

  • Hauswirth WW, Laipis PJ (1982) Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci USA 79:4686–4690

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Nakada K, Ogure A, Isobe K, Goto Y, Nonaka I, Hayashi JI (2000) Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 26:176–181

    Article  PubMed  CAS  Google Scholar 

  • King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246: 500–503

    Article  PubMed  CAS  Google Scholar 

  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  PubMed  CAS  Google Scholar 

  • Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Nass S, Nass MMK (1963b) Intramitochondrial fibers with DNA characteristics: Enzymatic and other hydrolytic treatments. J Cell Biol 19:613–629

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1952) The fine structure of mitochondria. Anat Rec 114: 427–451

    Article  PubMed  CAS  Google Scholar 

  • Robberson DL, Clayton DA (1972) Replication of mitochondrial DNA in mouse L cells and their thymidine kinase — derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci USA 69: 3810–3814

    Article  PubMed  CAS  Google Scholar 

  • Schimper AFW (1883) über die Entwicklung der Chlorophyllkörner und Farbkörner. Botanische Zeitung 41:105–114

    Google Scholar 

  • Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. New Engl J Med 347:576–580

    Article  PubMed  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenbaerg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  • Von Kölliker A (1856) Zeitschrift für wissenschaftl Zoologie VIII, 311–318

    Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ, Nikoskelainen EK (1988) Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Zsurka G, Kraytsberg Y, Kudina T, Kornblum C, Elger CE, Khrapko K, Kunz WS (2005) Recombination of mitochondrial DNA in skeletal muscle of individuals with multiple mitochondrial DNA heteroplasmy. Nat Genet 37:873–877

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wissinger, B. (2008). Mitochondriale DNA des Menschen. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69414-4_5

Download citation

Publish with us

Policies and ethics