Skip to main content

Molekulare Mechanismen von Zell-Zell-Wechselwirkungen

  • Chapter
Grundlagen der Molekularen Medizin
  • 6858 Accesses

Auszug

Molekulare Mechanismen für spezifische Wechselwirkungen zwischen Zellen entstanden schon früh in der Evolution, beim übergang von einzelligen zu vielzelligen Eukaryonten. Während der Embryonalentwicklung der Wirbeltiere spielen Zell-Zell-Wechselwirkungen in der Histogenese und Organogenese eine Rolle, im adulten Organismus stabilisieren sie das ausdifferenzierte Gewebe. Viele zelluläre Interaktionen in der Ontogenese sind überwiegend dynamisch, dagegen sind die meisten Zell-Zell-Wechselwirkungen im adulten Gewebe weitgehend statisch. Viele Zellen des Immunsystems gehen besonders dynamische, teilweise kurzlebige, zelluläre Interaktionen ein (Alberts et al. 1994; Karp 1999; Lodish et al. 2000; Wolpert et al. 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr.Opin.Hematol. 13:34–39

    PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular Biology of the Cell. Garland Publishing, Inc., New York

    Google Scholar 

  • Amzel LM, Poljak RJ (1979) Three-dimensional structure of immunoglobulins. Annu.Rev.Biochem. 48:961–997

    PubMed  CAS  Google Scholar 

  • Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG (1998) The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. U.S.A. 95: 4140–4145

    PubMed  CAS  Google Scholar 

  • Brakebusch C, Fässler R (2003) The integrin-actin connection, an eternal love affair. EMBO J. 22: 2324–2333

    PubMed  CAS  Google Scholar 

  • Brembeck FH, Rosario M, Birchmeier W (2006) Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr. Opin. Genet.Dev. 16:51–59

    PubMed  CAS  Google Scholar 

  • Brümmendorf T Lemmon V (2001) Immunoglobulin superfamily receptors: cis-interactions, intracellular adapters and alternative splicing regulate adhesion. Curr.Opin.Cell Biol. 13:611–618

    PubMed  Google Scholar 

  • Bruses JL, Rutishauser U (2001) Roles, regulation, and mechanism of polysialic acid function during neural development. Biochimie. 83:635–643

    PubMed  CAS  Google Scholar 

  • Bunting M, Harris ES, McIntyre TM, Prescott SM, Zimmerman GA (2002) Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving β2 integrins and selectin ligands. Curr.Opin.Hematol. 9:30–35

    PubMed  Google Scholar 

  • Cambien B, Wagner DD (2004) A new role in hemostasis for the adhesion receptor P-selectin. Trends Mol.Med. 10:179–186

    PubMed  CAS  Google Scholar 

  • Cheng X, Den Z, Koch PJ (2005) Desmosomal cell adhesion in mammalian development. Eur.J.Cell Biol. 84: 215–223

    PubMed  CAS  Google Scholar 

  • Clark EA, Ledbetter JA (1994) How B and T cells talk to each other. Nature. 367:425–428

    PubMed  CAS  Google Scholar 

  • Clemetson KJ (1999) Primary haemostasis: sticky fingers cement the relationship. Curr.Biol. 9: R110–R112

    PubMed  CAS  Google Scholar 

  • Davis SJ, van der Merwe PA (1996) The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17:177–187

    PubMed  CAS  Google Scholar 

  • Doherty P, Williams G, Williams EJ (2000) CAMs and axonal growth: a critical evaluation of the role of calcium and the MAPK cascade. Mol.Cell Neurosci. 16: 283–295

    PubMed  CAS  Google Scholar 

  • Durbec P, Cremer H (2001) Revisiting the function of PSA-NCAM in the nervous system. Mol.Neurobiol. 24: 53–64

    PubMed  CAS  Google Scholar 

  • Feldman GJ, Mullin JM, Ryan MP (2005) Occludin: structure, function and regulation. Adv.Drug Deliv.Rev. 57:883–917

    PubMed  CAS  Google Scholar 

  • ffrench-Constant C, Colognato H(2004) Integrins: versatile integrators of extracellular signals. Trends Cell Biol. 14:678–686

    PubMed  CAS  Google Scholar 

  • Freigang J, Proba K, Leder L, Diederichs K, Sonderegger P, Welte W (2000) The crystal structure of the ligand binding module of axonin-1/TAG-1 suggests a zipper mechanism for neural cell adhesion. Cell. 101:425–433

    PubMed  CAS  Google Scholar 

  • Gerido DA, White TW (2004) Connexin disorders of the ear, skin, and lens. Biochim.Biophys.Acta. 1662:159–170

    PubMed  CAS  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE (2003) Tight junction proteins. Prog.Biophys.Mol.Biol. 81:1–44

    PubMed  CAS  Google Scholar 

  • Grashoff C, Thievessen I, Lorenz K, Ussar S, Fässler R (2004) Integrinlinked kinase: integrin’s mysterious partner. Curr.Opin.Cell Biol. 16:565–571

    PubMed  CAS  Google Scholar 

  • Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat.Rev.Mol.Cell Biol. 6:622–634

    PubMed  CAS  Google Scholar 

  • Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat.Rev.Mol.Cell Biol. 5:816–826

    PubMed  CAS  Google Scholar 

  • Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosomes.Cancer. 34:255–268

    PubMed  CAS  Google Scholar 

  • Hannigan G, Troussard AA, Dedhar S (2005) Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat.Rev.Cancer.5:51–63

    PubMed  CAS  Google Scholar 

  • Haspel J, Grumet M (2003) The L1CAM extracellular region: a multidomain protein with modular and cooperative binding modes. Front Biosci. 8: s1210–s1225.: s1210–s1225

    PubMed  CAS  Google Scholar 

  • Hemler ME (1999) Integrins. In: Kreis T, Vale R (Hrsg.) Guidebook to the Extracellular Matrix, Anchor, and Adhesion Proteins. Oxford University Press, Oxford, S.196–212

    Google Scholar 

  • Herve JC (2004) The connexins. Biochim. Biophys. Acta. 1662: 1–2

    PubMed  CAS  Google Scholar 

  • Herve JC (2005)The connexins, Part III. Biochim.Biophys.Acta. 1719: 1–2

    PubMed  CAS  Google Scholar 

  • Hogg N, Henderson R, Leitinger B, McDowall A, Porter J, Stanley P (2002) Mechanisms contributing to the activity of integrins on leukocytes. Immunol.Rev. 186:164–171.: 164–171

    PubMed  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell. %20;110:673–687

    Google Scholar 

  • Itoh K, Cheng L, Kamei Y, Fushiki S, Kamiguchi H, Gutwein P, Stoeck A, Arnold B, Altevogt P, Lemmon V (2004) Brain development in mice lacking L1-L1 homophilic adhesion. Journal of Cell Biology 165:145–154

    PubMed  CAS  Google Scholar 

  • Janes SM, Watt FM (2006) New roles for integrins in squamous-cell carcinoma. Nat.Rev.Cancer. 6:175–183

    PubMed  CAS  Google Scholar 

  • Kakkar AK, Lefer DJ (2004) Leukocyte and endothelial adhesion molecule studies in knockout mice. Curr.Opin.Pharmacol. 4: 154–158

    PubMed  CAS  Google Scholar 

  • Kamiguchi H, Hlavin ML, Lemmon V (1998) Role of L1 in neural development: what the knockouts tell us. Mol.Cell.Neurosci. 12: 48–55

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (2000) Principles of Neural Science. McGraw-Hill, New York

    Google Scholar 

  • Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95: 377–384

    PubMed  CAS  Google Scholar 

  • Karp G (1999) Cell and Molecular Biology: Concepts and Experiments. John Wiley and Sons, New York

    Google Scholar 

  • Küster W (2000) Erbliche Hauterkrankungen. In: Ganten D, Ruckpaul K (Hrsg.) Handbuch der Molekularen Medizin, Band 7, Monogen bedingte Erbkrankheiten, Teil 2. Springer Verlag, Berlin, S. 216–248

    Google Scholar 

  • Lee DB, Huang E, Ward HJ (2006) Tight junction biology and kidney dysfunction. Am.J.Physiol Renal Physiol. 290: F20–F34

    PubMed  CAS  Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the α-subunit of integrin CR3 (CD11b/ CD18). Cell. 80:631–638

    PubMed  CAS  Google Scholar 

  • Ley K (2003) The role of selectins in inflammation and disease. Trends Mol.Med. 9: 263–268

    PubMed  CAS  Google Scholar 

  • Ley K, Kansas GS (2004) Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat.Rev.lmmunol. 4: 325–335

    CAS  Google Scholar 

  • Littlewood EA, Müller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin α8β1. Nat. Genet. 24:424–428

    Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000) Molecular Cell Biology. W.H. Freeman and Company, New York

    Google Scholar 

  • Makowski L, Caspar DL, Phillips WC, Goodenough DA (1977) Gap junction structures. II. Analysis of the X-ray diffraction data. J.Cell Biol. 74:629–645

    PubMed  CAS  Google Scholar 

  • Martini R, Zielasek J, Toyka KV, Giese KP, Schachner M (1995) Protein zero (pO)-deficient mice show myelin degeneration in peripheral nerves characteristic of inherited human neuropathies. Nat.Genet. 11:281–286

    PubMed  CAS  Google Scholar 

  • Matter K, Balda MS (2003) Signalling to and from tight junctions. Nat.Rev.Mol.Cell Biol. 4:225–236

    PubMed  CAS  Google Scholar 

  • Melchers F, Rolink AG, Schaniel C (1999) The role of chemokines in regulating cell migration during humoral immune responses. Cell. 99: 351–354

    PubMed  CAS  Google Scholar 

  • Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat.Cell Biol. 4: E83–E90

    PubMed  CAS  Google Scholar 

  • Müller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF (1997) Integrin α8β1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 88: 603–613

    PubMed  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 303:1483–1487

    PubMed  CAS  Google Scholar 

  • Parise LV(1999) Integrin αllbβ3 signaling in platelet adhesion and aggregation. Curr.Opin.Cell Biol. 11: 597–601

    Google Scholar 

  • Pertz O, Bozic D, Koch AW, Fauser C, Brancaccio A, Engel J (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J. 18:1738–1747

    PubMed  CAS  Google Scholar 

  • Rabionet R, Lopez-Bigas N, Arbones ML, Estivill X (2002) Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol.Med. 8: 205–212

    PubMed  CAS  Google Scholar 

  • Rice GP, Hartung HP, Calabresi PA (2005) Anti-α4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology. 64:1336–1342

    PubMed  CAS  Google Scholar 

  • Rose DM, Han J, Ginsberg MH (2002) α4 integrins and the immune response. Immunol.Rev. 186:118–124.: 118–124

    PubMed  CAS  Google Scholar 

  • Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu.Rev.Immunol. 22:129–156.: 129–156

    PubMed  CAS  Google Scholar 

  • Runker AE, Bartsch U, Nave KA, Schachner M (2003) The C264Y missense mutation in the extracellular domain of L1 impairs protein trafficking in vitro and in vivo. J.Neurosci. 23: 277–286

    PubMed  CAS  Google Scholar 

  • Sandi C (2004) Stress, cognitive impairment and cell adhesion molecules. Nat.Rev.Neurosci. 5:917–930

    PubMed  CAS  Google Scholar 

  • Shapiro L, Doyle JP, Hensley P, Colman DR, Hendrickson WA (1996) Crystal structure of the extracellular domain from PO, the major structural protein of peripheral nerve myelin. Neuron. 17:435–449

    PubMed  CAS  Google Scholar 

  • Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Ais-Nielsen J, Colman DR, Hendrickson WA (1995) Structural basis of cell-cell adhesion by cadherins. Nature. 374: 327–337

    PubMed  CAS  Google Scholar 

  • Shimaoka M, Springer TA (2003) Therapeutic antagonists and conformational regulation of integrin function. Nat.Rev.Drug Discov. 2: 703–716

    PubMed  CAS  Google Scholar 

  • Shy ME, Jani A, Krajewski K, Grandis M, Lewis RA, Li J, Shy RR, Balsamo J, Lilien J, Garbern JY, Kamholz J (2004) Phenotypic clustering in MPZ mutations. Brain. 127: 371–384

    PubMed  Google Scholar 

  • Smith JD, Craig AG, Kriek N, Hudson-Taylor D, Kyes S, Fagen T, Pinches R, Baruch DI, Newbold CI, Miller LH (2000) Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc.Natl.Acad.Sci.U.S.A. 97: 1766–1771

    PubMed  CAS  Google Scholar 

  • Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat.Rev.Neurosci. 6:191–200

    PubMed  Google Scholar 

  • Staehelin LA, Hull BE (1978) junctions between living cells. Sci.Am. 238:140–152

    PubMed  CAS  Google Scholar 

  • Takeichi M, Abe K (2005) Synaptic contact dynamics controlled by cadherin and catenins. Trends Cell Biol. 15:216–221

    PubMed  CAS  Google Scholar 

  • Troyanovsky S (2005) Cadherin dimers in cell-cell adhesion. Eur. J.Cell Biol. 84: 225–233

    PubMed  CAS  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res. 305: 285–298

    PubMed  Google Scholar 

  • Walmod PS, Kolkova K, Berezin V, Bock E (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem.Res. 29: 2015–2035

    PubMed  CAS  Google Scholar 

  • Wang J, Springer TA (1998) Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol.Rev. 163:197–215

    PubMed  CAS  Google Scholar 

  • Wang JH, Smolyar A, Tan K, Liu JH, Kim M, Sun ZY, Wagner G, Reinherz EL (1999) Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors. Cell. 97:791–803

    PubMed  CAS  Google Scholar 

  • Warner LE, Hilz MJ, Appel SH, Killian JM, Kolodry EH, Karpati G, Carpenter S, Watters GV, Wheeler C, Witt D, Bodell A, Nelis E, Van BC, Lupski JR (1996) Clinical phenotypes of different MPZ (PO) mutations may include Charcot-Marie-Tooth type 1B, Dejerine-Sottas, and congenital hypomyelination. Neuron. 17: 451–460

    PubMed  CAS  Google Scholar 

  • Watt FM (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21: 3919–3926

    PubMed  CAS  Google Scholar 

  • Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules. J.Mol.Med. 81:4–19

    PubMed  CAS  Google Scholar 

  • Wehrle-Haller B, Imhof BA (2003) Integrin-dependent pathologies. J.Pathol. 200:481–487

    PubMed  CAS  Google Scholar 

  • Wei CJ, Xu X, Lo CW (2004) Connexins and cell signaling in development and disease. Annu.Rev.Cell Dev.Biol. 20:811–838.: 811 838

    PubMed  CAS  Google Scholar 

  • Weller S, Gartner J (2001) Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Human Mutation 18:1–12

    PubMed  CAS  Google Scholar 

  • White DJ, Puranen S, Johnson MS, Heino J (2004) The collagen receptor subfamily of the integrins. Int.J.Biochem.Cell Biol. 36: 1405–1410

    PubMed  CAS  Google Scholar 

  • Williams AF, Barclay AN (1988) The immunoglobulin superfamily — domains for cell surface recognition. Annu.Rev.Immunol. 6: 381–405

    PubMed  CAS  Google Scholar 

  • Wolpert L, Beddington R, Brockes J, Jessel T, Lawrence P, Meyerowitz E (1999) Entwicklungsbiologie. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Wong EV, Kenwrick S, Willems PJ, Lemmon V(1995) Mutations in the cell adhesion molecule L1 cause mental retardation. Trends. Neurosci. 18:168–172

    PubMed  CAS  Google Scholar 

  • Wu H, Kwong PD, Hendrickson WA (1997) Dimeric association and segmental variability in the structure of human CD4. Nature. 387:527–530

    PubMed  CAS  Google Scholar 

  • Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA (2001 ) Crystal structure of the extracellular segment of integrin αVβ3. Science. 294:339–345

    PubMed  CAS  Google Scholar 

  • Yagi T (2003) Diversity of the cadherin-related neuronal receptor/ protocadherin family and possible DNA rearrangement in the brain. Genes Cells. 8:1–8

    PubMed  CAS  Google Scholar 

  • Zemmyo M, Meharra EJ, Kuhn K, Creighton-Achermann L, Lotz M (2003) Accelerated, aging-dependent development of osteoarthritis in α1 integrin-deficient mice. Arthritis Rheum. 48: 2873–2880

    PubMed  CAS  Google Scholar 

  • Zhou FQ, Zhong J, Snider WD (2003) Extracellular crosstalk: when GDNF meets N-CAM. Cell. 113:814–815

    PubMed  CAS  Google Scholar 

Literatur zur Zeittafel

  • Barclay AN, Birkeland ML, Brown MH, Beyers AD, Davis SJ, Somoza C, Williams AF (1993) The Leucocyte Antigen FactsBook. Academic Press, London

    Google Scholar 

  • Bause E, Hettkamp H (1979) Primary structural requirements for N-glycosylation of peptides in rat liver. FEBS Lett. 108:341–344

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Nelson RM (1993) Selectins. J.CIin.Invest. 91:379–387

    CAS  Google Scholar 

  • Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 236: 799–806

    PubMed  CAS  Google Scholar 

  • Geiger B, Ayalon O (1992) Cadherins. Annu.Rev.Cell Biol. 8:307–332

    PubMed  CAS  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25

    PubMed  CAS  Google Scholar 

  • Klein J (1982) Immunology, the Science of Self-Nonself-Discrimination. John Wiley & Sons, New York

    Google Scholar 

  • Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the alpha subunit of integrin CR3 (CD11b/ CD18). Cell. 80:631–638

    PubMed  CAS  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 303:1483–1487

    PubMed  CAS  Google Scholar 

  • Overduin M, Harvey TS, Bagby S, Tong KI, Yau P, Takeichi M, Ikura M (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science. 267:386–389

    PubMed  CAS  Google Scholar 

  • Qu A, Leahy DJ (1995) Crystal structure of the I-domain from the CD11a/CD 18 (LFA-1, alpha L beta 2) integrin. Proc.Natl.Acad. Sci.U.SA 92:10277–10281

    CAS  Google Scholar 

  • Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, Dai XP, Xuong NH, Axel R, Sweet RW, Hendrickson WA (1990) Crystal structure of an HIV-binding recombinant fragment of human CD4 [see comments]. Nature. 348:419–426

    PubMed  CAS  Google Scholar 

  • Schieiden MJ (1838) Beiträge zur Phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin 5:137–176

    Google Scholar 

  • Schwann T (1839) Mikroskopische Untersuchungen über die übereinstimmung in der Struktur und dem Wachstum der Tiere und Pflanzen. Sander’sche Buchhandlung, Berlin

    Google Scholar 

  • Seed B, Aruffo A (1987) Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc.Natl.Acad.Sci.U.S.A. 84: 3365–3369

    PubMed  CAS  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science. 175: 720–731

    PubMed  CAS  Google Scholar 

  • Townes P, Holtfreter J (1955) Directed movements and selected adhesion of embryonic amphibian cells. J.Exp.Zool. 128: 53–120

    Google Scholar 

  • Wang J, Yan Y, Garrett TPJ, Liu J, Rodgers DW, Garlick RL, Tarr GE, Husain Y, Reinherz EL, Harrison SC (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature. 348:411–418

    PubMed  CAS  Google Scholar 

  • Williams AF, Gagnon J (1982) Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin. Science. 216:696–703

    PubMed  CAS  Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J.Exp.Zool. 5: 245–258

    Google Scholar 

  • Wu Q, Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell. 97:779–790

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brümmendorf, T. (2008). Molekulare Mechanismen von Zell-Zell-Wechselwirkungen. In: Ganten, D., Ruckpaul, K. (eds) Grundlagen der Molekularen Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69414-4_2

Download citation

Publish with us

Policies and ethics