Programming Experimental Procedures for Newtonian Kinematic Machines

  • E. J. Beggs
  • J. V. Tucker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)


By experimental computation we mean the idea of computing a function by experimenting with some physical equipment. To analyse the functions computable by experiment, we are developing a methodology that chooses a precise specification of a physical theory T and derives precise descriptions of the procedures and equipment the theory allows. As a case study, we choose a fragment T of Newtonian kinematics and describe a language EP(T), and some of its extensions, for expressing experimental procedures allowed by T. The languages for experimental procedures are similar to imperative programming languages that express algorithmic procedures. We show that EP(T) can define all functions on the rational numbers that are definable by algorithms.


Data Type Rational Number Physical Theory Experimental Computation Newtonian Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akl, S.G.: Conventional or unconventional: Is any computer universal? In: Adamatzky, A., Teuscher, C. (eds.) From Utopian to Genuine Unconventional Computers, pp. 101–136. Luniver Press, Frome (2006)Google Scholar
  2. 2.
    Beggs, E. J., Tucker, J.V.: Computations via experiments with kinematic systems, Research Report 4.04, Department of Mathematics, University of Wales Swansea, March 2004 or Technical Report 5-2004, Department of Computer Science, University of Wales Swansea (March 2004)Google Scholar
  3. 3.
    Beggs, E.J., Tucker, J. V.: Embedding infinitely parallel computation in Newtonian kinematics. Applied Mathematics and Computation 178, 25–43 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beggs, E. J., Tucker, J.V.: Can Newtonian systems, bounded in space, time, mass and energy compute all functions? Theoretical Computer Science 371, 4–19 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beggs, E.J., Tucker, J. V.: Experimental computation of real numbers by Newtonian machines. Proceedings Royal Society Series A 463, 1541–1561 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beggs, E.J., Costa, J.F., Loff, B., Tucker, J.V.: Computational complexity with experiments as oracles (in preparation, 2008)Google Scholar
  7. 7.
    Chen, F., Rosu, G., Venkatesan, R.P.: Rule-based analysis of dimensional safety. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Geroch, R., Hartle, J.B.: Computability and physical theories. Foundations of Physics 16, 533–550 (1986)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Griffor, E. (ed.): Handbook of Computability Theory. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  10. 10.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kreisel, G.: A notion of mechanistic theory. Synthese 29, 9–24 (1974)CrossRefGoogle Scholar
  12. 12.
    Odifreddi, P.: Classical Recursion Theory. Studies in Logic and the Foundations of mathematics, vol. 129. North-Holland, Amsterdam (1989)zbMATHGoogle Scholar
  13. 13.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics, Perspectives in Mathematical Logic. Springer, Berlin (1989)Google Scholar
  14. 14.
    Stoltenberg-Hansen, V., Tucker, J.V.: Effective algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic in Computer Science. Semantic Modelling, vol. IV, pp. 357–526. Oxford University Press, Oxford (1995)Google Scholar
  15. 15.
    Stoltenberg-Hansen, V., Tucker, J.V.: Computable rings and fields. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 363–447. Elsevier, Amsterdam (1999)CrossRefGoogle Scholar
  16. 16.
    Stoltenberg-Hansen, V., Tucker, J. V.: Concrete models of computation for topological algebras. Theoretical Computer Science 219, 347–378 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Stoltenberg-Hansen, V., Tucker, J. V.: Computable and continuous partial homomorphisms on metric partial algebras. Bulletin for Symbolic Logic 9, 299–334 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tucker, J. V., Zucker, J.I.: Computable functions and semicomputable sets on many sorted algebras. In: Abramsky, S., Gabbay, D., Maibaum, T. (eds.) Handbook of Logic for Computer Science, vol. V, pp. 317–523. Oxford University Press, Oxford (2000)Google Scholar
  19. 19.
    Tucker, J. V., Zucker, J.I.: Abstract versus concrete computation on metric partial algebras. ACM Transactions on Computational Logic 5, 611–668 (2004)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Weihrauch, K.: Computable Analysis, An introduction. Springer, Heidelberg (2000)zbMATHGoogle Scholar
  21. 21.
    Yao, A.: Classical physics and the Church Turing thesis. Journal ACM 50, 100–105 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • E. J. Beggs
    • 1
  • J. V. Tucker
    • 1
  1. 1.School of Physical SciencesSwansea UniversitySwanseaUnited Kingdom

Personalised recommendations