Perfect Local Computability and Computable Simulations

  • Russell Miller
  • Dustin Mulcahey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5028)


We study perfectly locally computable structures, which are (possibly uncountable) structures \({\mathcal{S}}\) that have highly effective presentations of their local properties. We show that every such \({\mathcal{S}}\) can be simulated, in a strong sense and even over arbitrary finite parameter sets, by a computable structure. We also study the category theory of a perfect cover of \({\mathcal{S}}\), examining its connections to the category of all finitely generated substructures of \({\mathcal{S}}\).


Category theory computability local computability perfect local computability simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borceux, F.: Handbook of Categorical Algebra, 3 volumes. Cambridge University Press, Cambridge (1994-1995)Google Scholar
  2. 2.
    Mac Lane, S.: Categories for the Working Mathematician. 2nd edn. Springer, New York (1997)Google Scholar
  3. 3.
    Miller, R.G.: Locally computable structures. In: Cooper, B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 575–584. Springer, Heidelberg (2007), CrossRefGoogle Scholar
  4. 4.
    Miller, R.G.: Local computability and uncountable structures (to appear) Google Scholar
  5. 5.
    Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, New York (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Russell Miller
    • 1
  • Dustin Mulcahey
    • 2
  1. 1.The CUNY Graduate CenterQueens College of CUNYFlushingUSA
  2. 2.The CUNY Graduate Center New YorkUSA

Personalised recommendations